The number of molecules decreases.
Answer:
shivering
hair on the body standing up
goosebump forming
Explanation:
The processes that help the body warm-up from the available options include <em>the shivering of the body</em>, <em>formation of goosebumps on the skin</em>, and <em>the standing up of hairs on the body.</em>
When the temperature of the body falls below the setpoint or the environment is cold, a homeostatic response is triggered and a signal is sent from the control center to the muscles of the body. <u>The muscles start shaking in order to generate heat to raise the temperature of the body</u>. At the same time, <u>the tiny muscles at the base of the hairs on the skin contract and pull the hairs erect, causing goosebumps in the process.</u>
With that informatio you can:
1) Write the chemical equation
2) Balance the chemical equation
3) State the molar ratios
4) Predict if precipitation occurs.
I will do all four, for you:
1) Chemical equation:
mercury(I) nitrate potassium bromide mercury(I) bromide potassium nitrate
<span>Hg2(NO3)2 + KBr → Hg2Br2 + KNO<span>3
2) Balanced chemical equation
</span></span>
<span>Hg2(NO3)2 + 2KBr → Hg2Br2 + 2KNO<span>3
3) Molar ratios or proportions:
1 mol </span></span><span>Hg2(NO3)2 : 2 mol KBr : 1 mol Hg2Br2 : 2 mol KNO<span>3
4) Prediction of precipitation.
You can use the solubility rules or a table of solubilities. I found in a table of solutiblities that mercury(I) bromide is insoluble and potassium bromide is soluble, Then you can predict that the precipitation of mercury(I) bromide will occur.
</span></span>
Answer:
The oxidation number of an atom is the charge it appears to have when you count the electrons according to some arbitrary rules. The oxidation number of an atom depends on the other atoms in the substance.
Explanation:
For example, In KCl, the oxidation number of Cl is 0.