Answer:
π = 14.824 atm
Explanation:
wt % = ( w NaCL / w sea water ) * 100 = 3.5 %
assuming w sea water = 100 g = 0.1 Kg
⇒ w NaCl = 3.5 g
osmotic pressure ( π ):
∴ T = 20 °C + 273 = 293 K
∴ C ≡ mol/L
∴ density sea water = 1.03 Kg/L....from literature
⇒ volume sea water = 0.1 Kg * ( L / 1.03 Kg ) = 0.097 L sln
⇒ mol NaCl = 3.5 g NaCL * ( mol NaCL / 58.44 g ) = 0.06 mol
⇒ C NaCl = 0.06 mol / 0.097 L = 0.617 M
⇒ π = 0.617 mol/L * 0.082 atm L / K mol * 293 K
⇒ π = 14.824 atm
Answer:
The work done and heat absorbed are both -8,1 kJ
Explanation:
The work done in an isobaric process is defined as:
W = -P (Vf - Vi)
Where P is pressure ( 10 atm)
Vf = 10 L
Vi = 2 L
Thus, <em>W = -80 atm×L ≡ -8,1 kJ</em>
This is the work done in expansion of the gas. As the gas remains at the same temperature, there is no change in internal energy doing that all work was absorbed as heat.
I hope it helps!
<span> UV radiation are high energy radiations and they are mutation causing agents so
</span>Mutagen <span> best describes the relationship of solar UV radiation to the environment
so option A is correct
hope it helps</span>