Explanation:
Potential energy is the the relationship between work done height mass and acceleration due to gravity, because of this some objects also experience kinetic energy due to the factors mentioned above
The crust
1. divergent (moves away from each other)
2. convergent (moves towards each other)
3. transform (slides past each other)
KOH+ HNO3--> KNO3+ H2O<span>
From this balanced equation, we know that 1 mol
HNO3= 1 mol KOH (keep in mind this because it will be used later).
We also know that 0.100 M KOH aqueous
solution (soln)= 0.100 mol KOH/ 1 L of KOH soln (this one is based on the
definition of molarity).
First, we should find the mole of KOH:
100.0 mL KOH soln* (1 L KOH soln/
1,000 mL KOH soln)* (0.100 mol KOH/ 1L KOH soln)= 1.00*10^(-2) mol KOH.
Now, let's find the volume of HNO3 soln:
1.00*10^(-2) mol KOH* (1 mol HNO3/ 1 mol KOH)* (1 L HNO3 soln/ 0.500 mol HNO3)* (1,000 mL HNO3 soln/ 1 L HNO3 soln)= 20.0 mL HNO3 soln.
The final answer is </span>(2) 20.0 mL.<span>
Also, this problem can also be done by using
dimensional analysis.
Hope this would help~
</span>
One mole of a substance contains 6.02 × 10∧23 particles. Thus we first convert 89.2 g to moles. 1 mole of sodium contains 23 g
Hence 89.2 g = 89.2 / 23 g = 3.878 moles
Therefore, 3.878 × 6.02×10∧23 particles= 23.346 × 10∧23 particles
Hence 89.2 g of sodium contains 2.335 ×10∧24 particles
Answer:
There’s a particular way of writing what’s in a molecule called a chemical formula. The chemical formulae for all the elements that form each molecule and uses a small number to the bottom right of an element’s symbol to stand for the number of atoms of that element. For example, the chemical formula for water is H 2 O.
Explanation: