1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leviafan [203]
3 years ago
6

Please answer asap!

Chemistry
1 answer:
kaheart [24]3 years ago
3 0
200 ml is 1/5 of a liter, so the answer is five times the number of moles present in the solution. 0.6 moles/0.2 liter = x moles/1.0 liter. Solving for x gives 0.2 x = 0.6 or x = 3.0 M

so the answer is c
You might be interested in
How does more greenhouse gases in the Earth's atmosphere affect earth's temperature?
Mumz [18]

Explanation:

Greenhouse gasses in Earth's atmosphere affect Earth's temperature by making it hotter. Greenhouse gasses make the Earth warmer by trapping heat. You can think of greenhouse gasses as Earth's blanket.

5 0
3 years ago
Read 2 more answers
A 50.0 mL solution of 0.129 M KOH is titrated with 0.258 M HCl. Calculate the pH of the solution after the addition of each of t
kobusy [5.1K]

Answer:

A- pH = 13.12

B- pH = 12.91

C- pH = 12.71

D- pH = 12.43

E- pH = 11.55

F- pH = 7

G- pH = 2.46

H- pH = 1.88

Explanation:

This is a titration of a strong base with a strong acid. The neutralization reaction is: KOH (aq) + HCl (aq) →  H₂O(l) + KCl(aq)

Our pH at the equivalence point is 7, because we have made a neutral salt.

To determine the volume at that point we state the formula for titration:

mmoles of base = mmoles of acid

Volume of base  . M of base = Volume of acid . M of acid

50mL . 0.129M = 0.258 M . Volume of acid

Volume of acid = (50mL . 0.129M) / 0.258 M →  25 mL (Point <u>F</u>)

When we add 25 mL of HCl, our pH will be 7.

A- At 0 mL of acid, we only have base.

KOH → K⁺ + OH⁻

[OH⁻] = 0.129 M

To make more easy the operations we will use, mmol.

mol . 1000 = mmoles → mmoles / mL = M

- log 0.129 = 0.889

14 - 0.889 = 13.12

B-  In this case we are adding, (7 mL . 0.258M) = 1.81 mmoles of H⁺

Initially we have  0.129 M . 50 mL = 6.45 mmoles of OH⁻

1.81 mmoles of H⁺ will neutralize, the 6.45 mmoles of OH⁻ so:

6.45 mmol - 1.81 = 4.64 mmoles of OH⁻

This mmoles of OH⁻ are not at 50 mL anymore, because our volume has changed. (Now, we have 50 mL of base + 7 mL of acid) = 57 mL of total volume.

[OH⁻] = 4.64 mmoles / 57 mL = 0.0815 M

- log 0.0815 M = 1.09 → pOH

pH = 14 - pOH → 14 - 1.09 = 12.91

C- In this case we add (12.5 mL . 0.258M) = 3.22 mmoles of H⁺

<em>Our initial mmoles of OH⁻ would not change through all the titration. </em>

Then 6.45 mmoles of OH⁻ are neutralized by 3.22 mmoles of H⁺.

6.45 mmoles of OH⁻ - 3.22 mmoles of H⁺ = 3.23 mmoles of OH⁻

Total volume is: 50 mL of base + 12.5 mL = 62.5 mL

[OH⁻] = 3.23 mmol / 62.5 mL = 0.0517 M

- log  0.0517 = 1.29 → pOH

14 - 1.11 = 12.71

D- We add (18 mL . 0.258M) = 4.64 mmoles of H⁺

6.45 mmoles of OH⁻ are neutralized by 4.64 mmoles of H⁺.

6.45 mmoles of OH⁻ - 4.64 mmoles of H⁺ = 1.81 mmoles of OH⁻

Total volume is: 50 mL of base + 18 mL = 68 mL

[OH⁻] = 1.81 mmol / 68 mL = 0.0265 M

- log  0.0265 = 1.57 → pOH

14 - 1.57 = 12.43

E- We add (24 mL . 0.258M) = 6.19 mmoles of H⁺

6.45 mmoles of OH⁻ are neutralized by 6.19 mmoles of H⁺.

6.45 mmoles of OH⁻ - 6.19 mmoles of H⁺ = 0.26 mmoles of OH⁻

Total volume is: 50 mL of base + 24 mL = 74 mL

[OH⁻] = 0.26 mmol / 74 mL = 3.51×10⁻³ M

- log  3.51×10⁻³  = 2.45 → pOH

14 - 2.45 = 11.55

F- This the equivalence point.

mmoles of OH⁻ = mmoles of H⁺

We add (25 mL . 0.258M) = 6.45 mmoles of H⁺

All the OH⁻ are neutralized.

OH⁻  +  H⁺  ⇄   H₂O              Kw

[OH⁻] = √1×10⁻¹⁴   →  1×10⁻⁷  →  pOH = 7

pH → 14 - 7 = 7

G- In this case we have an excess of H⁻

We add (26 mL . 0.258M ) = 6.71 mmoles of H⁺

We neutralized all the OH⁻ but some H⁺ remain after the equilibrium

6.71 mmoles of H⁺ - 6.45 mmoles of OH⁻ = 0.26 mmoles of H⁺

[H⁺] = 0.26 mmol / Total volume

Total volume is: 50 mL + 26 mL → 76 mL

[H⁺] = 0.26 mmol / 76 mL → 3.42×10⁻³ M

- log 3.42×10⁻³ = 2.46 → pH

H- Now we add (29 mL . 0.258M) = 7.48 mmoles of H⁺

We neutralized all the OH⁻ but some H⁺ remain after the equilibrium

7.48 mmoles of H⁺ - 6.45 mmoles of OH⁻ = 1.03 mmoles of protons

Total volume is 50 mL + 29 mL = 79 mL

[H⁺] = 1.03 mmol / 79 mL → 0.0130 M

- log 0.0130 = 1.88 → pH

After equivalence point, pH will be totally acid, because we always have an excess of protons. Before the equivalence point, pH is basic, because we still have OH⁻ and these hydroxides, will be neutralized through the titration, as we add acid.

5 0
3 years ago
How much .05 M Hcl solution can be made by diluting 250 mL of 10 M HCl
kirza4 [7]
0.05 * V1 = 250 * 10 

<span> V1 = 2500 / 0.05 </span>

<span> V1 = 2500 * 20 </span>

<span> V1 = 50000 mL </span>

<span>V1 = 50 Liters . 

Hope this helped! :3</span>
6 0
3 years ago
Does all atoms have a positive charge
Goryan [66]
No, they can have<span> a neutral </span><span>charge</span>
7 0
3 years ago
Explain why a climax community is not always a forest.
kaheart [24]
They are all in forest climax means forest
4 0
3 years ago
Other questions:
  • Covalent bonds in a molecule absorb radiation in the IR region and vibrate at characteristic frequencies.
    6·1 answer
  • How many electrons will metals generally have in their outer shell?
    14·2 answers
  • Two fundamental concepts about the ion channels of a resting neuron are that the channels _____.
    14·1 answer
  • Which of these elements has two valence electrons? A.hydrogen B.barium C.nitrogen D.krypton E.bromine
    8·1 answer
  • What is the formula for flow rate?
    7·1 answer
  • Which of the following correctly shows the relationship, in terms of number of particles, of the three substances?
    11·1 answer
  • 3. In an experiment it was found that 40.0cm of 0.2M sodium hydroxide solution just neutralized 0.2g
    12·1 answer
  • If 9 moles of P203 are formed, how many<br> moles of O2 reacted?
    9·1 answer
  • What does it mean for a reaction to release energy?.
    5·2 answers
  • The molar solubility of cui is 2. 26 × 10-6 m in pure water. Calculate the ksp for cui.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!