Answer:
- <u><em>No, I would not consider a metal to be a plasma because plasma is just another state of matter, and the copper wire is in solid state.</em></u>
Explanation:
Metal is not a state of matter. Metals can be solid or liquid (molten) depending on their melting point and the temperature at which they are.
Plasma is a state of matter, similar to gas, but it is reached only at very high temperatures like in the Sun. The particles in plasma state are not neutral atoms or molecules but negatively charged ions and electrons.
The copper wire is yet a solid, thus it cannot be considered a plasma.
Metals can be in plasma state only if the temperature is too high, like the temperatures in the stars. In fact, the metals in the Sun and other hotter stars are in plasma state.
The experiment that was carried out by Louisa goes to show us that different materials heat up at different rates.
<h3>What is the specific heat capacity?</h3>
The term specific heat capacity just goes to show us the amount of heat that must be absorbed before the temperature of an object would rise by 1 K. In this case, we can see that we have been told that the after 30 minutes, the sand had heated more than the water. This simply implies that the energy that the sand and the water absorbed was able to increase the temperature of the sand mush more than it increased the temperature of the water.
Thus we can see that the heat capacity of the sand is much less than the heat capacity of the water since the sand could be able to be heated up much faster than the the water could be heated up.
Learn more about heat capacity:brainly.com/question/28302909
#SPJ1
If the forward reaction goes close to completion and has a high yield, that means the concentration of products will be higher than the concentration of reactants.
<span>So if the concentration of products is higher, Kc (equilibrium constant) will be greater than 1.
</span><span>
Recall the calculation for the equilibrium constant for reaction. Picture below might help you.</span>
A balance is used to determine mass