First, solve for the acceleration of the car. You know the mass of the car and the braking force, so you can use the equation Force = Mass x Acceleration. This gives you 12,000 = 2,000 x A. Divide 12,000 by 2,000 to find the acceleration equal to 6 m/s^2. This is the rate that the car is slowing down at. Velocity is equal to accleration x time (rate x time), so you multiply 6 by the time of 5 seconds. This leaves you with a velocity of 30 m/s or about 67.1 mph.
We need to use Wien's Law
Wavelength = 0.0028976 [m.K] / T
This establishes a relation between the wavelength and temperature of a black body (any body that absorbs radiation, such as the stars)
T = 0.0028976 [m.K]/290 E-9[m] = 9991.724 K
Answer:
The sample is most likely gaining thermal energy
Explanation:
That statement is true
Retinal disparity : space between your eyes that allow binocular vision to create depth perception
Retinal Convergence : Space between your eyes that signal visual moves to the retina
They both will increases as an object get closer to the individual, allowing them acknowledge and observe the existence of the object
Answer:
c. As we gain mass, the force of gravity on us increases