Explanation:
1.The somatic nervous system is the part of the peripheral nervous system associated with the voluntary control of body movements via skeletal muscles.
2. The autonomic nervous system is a control system that acts largely unconsciously and regulates bodily functions, such as the heart rate, digestion, respiratory rate, pupillary response, urination, ect...
3. Sympathetic Division is a term used by researchers and medical practitioners to describe the subdivision of the autonomic nervous system (that controls involuntary and automatic physical reactions) that responds to emergency situations by mobilizing and controlling the energy necessary to cope with the situation.
4. The part of the autonomic nervous system that tends to act in opposition to the sympathetic nervous system, as by slowing down the heart and dilating the blood vessels. It also regulates the function of many glands, such as those that produce tears and saliva.
5. a regulatory substance produced in an organism and transported in tissue fluids such as blood or sap to stimulate specific cells or tissues into action.
Answer:
80m/s
Explanation:
to find it you have to work it out by using the formula distance divided by speed to find time.
Answer:
1.24 C
Explanation:
We know that the magnitude of the induced emf, ε = -ΔΦ/Δt where Φ = magnetic flux and t = time. Now ΔΦ = Δ(AB) = AΔB where A = area of coil and change in magnetic flux = Now ΔB = 0 - 0.750 T = -0.750 T, since the magnetic field changes from 0.750 T to 0 T.
The are , A of the circular loop is πD²/4 where D = diameter of circular loop = 16.7 cm = 16.7 × 10⁻²m
So, ε = -ΔΦ/Δt = -AΔB/Δt= -πD²/4 × -0.750 T/Δt = 0.750πD²/4Δt.
Also, the induced emf ε = iR where i = current in the coil and R = resistance of wire = ρl/A where ρ = resistivity of copper wire =1.68 × 10⁻⁸ Ωm, l = length of wire = πD and A = cross-sectional area of wire = πd²/4 where d = diameter of wire = 2.25 mm = 2.25 × 10⁻³ m.
So, ε = iR = iρl/A = iρπD/πd²/4 = 4iρD/d²
So, 4iρD/d² = 0.750πD²/4Δt.
iΔt = 0.750πD²/4 ÷ 4iρD/d²
iΔt = 0.750πD²d²/16ρ.
So the charge Q = iΔt
= 0.750π(Dd)²/16ρ
= 0.750π(16.7 × 10⁻²m 2.25 × 10⁻³ m)²/16(1.68 × 10⁻⁸ Ωm)
= 123.76 × 10⁻² C
= 1.2376 C
≅ 1.24 C
C. Eastward. Acceleration is the change in speed so it can be a positive (speeding up) or negative (slowing down) acceleration