Explanation:
joesjejj2kwkek726k46m6em6ms6m26m36m7mem7m6x7mxbdgshndkdjd
Answer:
These properties are basically the inverse of each other.
Explanation:
- Electronegativity is the tendency of an atom to attract an electron and make it a part of its orbital.
Ionization enthalpy, is the energy required to remove an electron from an atom.
- More electronegative atoms have high ionization enthalpies If the energy required to remove an electron is less, i.e. the atom has more tendency to give electron, it would thus have less tendency to take electron.
- Values and tendency of electronegativity in the periodic table: In general, the electronegativity of a non‐metal is larger than that of metal. For the elements of one period the electronegativities increase from left to right across the periodic table. For the elements of one main group the electronegativities decrease from top to bottom across the periodic table. To the subgroup elements, there’s no regular rule.
- Values and tendency of ionization potential in the periodic table: The first ionization energy is the energy which is required when a gaseous atom/ion loses an electron to form a gaseous +1 valence ion. The energy which is required for a gaseous +1 valence ion to loose an electron to form a gaseous +2 valence ion, is called the second ionization energy of an element. In general, the second ionization energy is higher than the first ionization energy of an element.
The first ionization energies of the elements of one period increase from the left to the right across the periodic table. According to the elements of main group, the first ionization energies generally decreases from top to bottom across the periodic table.
<span>1.23x10^24 atoms/6.022x10^23 atom/mol = 2.04 mol H20 </span>
Answer:
Explanation:
The equation is given as:
CH3CHOHC2H4CHO + CH3OH --> CYCLIC ACETAL + H2O
This above equation is carried out in the presence of a strong acid. There are five mechanisms employed and they are:
Step 1:
Initial formation of the hemiacetal which takes several steps
Step 2:
Addition of a proton. The hemicetal is protonated on the hydroxyl group (-OH group)
Step 3:
As seen a bond is broken to give the H2O molecule and a resonance stabilized cation.
The carbonyl group on the cation is enriched with the oxygen-18 got from the H2O molecule as seen in the mechanism.
Step 4:
An attraction occurs between electrophile and nucleophile i.e the stabilised cation and the lone paids of the methanol.
Step 5:
Finally, a proton (+) is removed from the molecule by a lone pair of electron on the methanol.
Attached are the Steps 1 - 5 mechanism below
Answer:
Moles to Grams caco3
1 mole is equal to 1 moles CaCO3, or 100.0869 grams.