Stephanie is incorrect. Since fossil fuels form in the absence of oxygen, if oxygen is present, they cannot form.
(sample answer:)
So the question ask to calculate the over all equation for a certain element and the following are
- over all equation - FE(OH)3+3NH4CI
- over all ionic equation - e(OH)3 (s) & 3 NH4+ (aq) & 3Cl- (aq) - net ionic equation - Fe+3+3OH-+3NH$++3CI-
Since we already have the balanced equation, we know that the ratio between
is
respectively.
So then we can set up a proportion to find the number of moles produced when 2.90 moles of Na react completely:

Then we cross multiply and solve for x:


Therefore, we know that when 2.90 moles of Na react completely, there are 1.45 moles of
that are produced.
Answer:
2
Explanation:
In two reactions energy is released.
1) C₆H₁₂O₆ + 6O₂ → 6H₂O + 6CO₂ + heat
It is cellular respiration reaction.It involves the breakdown of glucose molecule in the presence of oxygen to yield large amount of energy. Water and carbon dioxide are also produced as a byproduct.
Glucose + oxygen → carbon dioxide + water + 38ATP
2) 2H₂ + O₂ → 2H₂O ΔH = -486 kj/mol
The given reaction is formation of water. In this reaction oxygen and hydrogen react to form water and 486 kj/mol is also released.
The reaction in which heat is released is called exothermic reaction.
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂
Answer:
The molar mass of the organic solid is 120.16 g/mol.
The molecular formula of an organic solid is 
Explanation:
Let the molecular mass of an organic solid be 


where,
=Elevation in boiling point = 
Mass of organic solid= 0.561 g
Mass of diphenyl = 24.9 g = 0.0249 kg (1 kg = 1000 g)
= boiling point constant = 8.00 °C/m
m = molality
Now put all the given values in this formula, we get



Percentage of carbon in an organic solid = 40.0%

x = 4.0
Percentage of hydrogen in an organic solid = 6.7%

y = 8.0
Percentage of hydrogen in an organic solid = 6.7%

y = 4.0
The molecular formula of an organic solid is 