Answer:

Explanation:
<em>Ferrous Sulphate</em>
<em> is generally found as Lime-Green Crystals. On heating, these crystals almost immediately turn white-yellow. They then, break down to produce an anhydrous mixture of Sulphur Trioxide </em>
<em>, Sulphur Dioxide </em>
<em> as well as Ferric Oxide </em>
<em>.</em>
<em>We can hence, frame a skeletal equation of this reaction and try to balance it.</em>
<em>Hence,</em>

<em>Now,</em>
<em>a)In order to balance it through the 'Hit &Trial Method', we'll follow a series of </em><em>steps</em><em>:</em>
<em>1. First, lets compare the number of Fe (Iron) atoms on the RHS and LHS. We find that, the no. of Fe Atoms on the RHS is twice the number of Fe Atoms on the LHS. We hence, add a co-effecient 2 beside </em>
.
<em>2. Now, Iron atoms, Sulphur Atoms and Oxygen atoms occur 2, 2, 8 respectively on both the sides:</em>
<em> Hence, As all the other elements as well as iron, balance, we've arrived upon our Balanced Equation :</em>
<em> </em>
<em>b) We know that, decomposition reactions are [generally] endothermic reactions in which Large Compounds </em><em>decompose </em><em>into smaller elements and compounds. Here, as Ferrous Sulphate </em><em>decomposes </em><em>into Sulphur Dioxide, Sulphur Trioxide and Ferric Oxide, the reaction that occurs here is </em><em>Decomposition Reaction.</em>
Answer: 
Explanation:
Geometrical symmetry of the molecule and the polarity of the bonds determine the polarity of the molecule.
The molecule that has zero dipole moment that means it is a geometrically symmetric molecule and the molecule which has some net dipole moment means it is a geometrically asymmetric molecule.
As the molecule is symmetric, the dipole moment will be zero as dipole moments cancel each other and the molecule will be non-polar.
As the molecule is asymmetric, the dipole moment will not be zero and the molecule will be polar.
Example: 
Thus, we can say that
is a polar molecule.
Answer:
more rounded the grains are the more they have been moved around
Explanation:
Generally – the more rounded the grains are the more they have been moved around (i.e. the longer the length of time or distance they have moved). Angular grains cannot have travelled far
geolsoc.org.uk