Answer:
yes
Step-by-step explanation:
We are given that a Cauchy Euler's equation
where t is not equal to zero
We are given that two solutions of given Cauchy Euler's equation are t,t ln t
We have to find the solutions are independent or dependent.
To find the solutions are independent or dependent we use wronskain

If wrosnkian is not equal to zero then solutions are dependent and if wronskian is zero then the set of solution is independent.
Let 


where t is not equal to zero.
Hence,the wronskian is not equal to zero .Therefore, the set of solutions is independent.
Hence, the set {t , tln t} form a fundamental set of solutions for given equation.
Answer:
946
Step-by-step explanation:
Let's make an equation :
34% of x = 321.8
Covert 34% into decimal by dividing by 100 :
34 ÷ 100 = 0.34
Rewrite equation with decimal form :
0.34x = 321.8
Divide both sides by x to make x the subject :
x = 321.8 ÷0.34
x = 946.470588235
To the nearest whole number will be 946 as 4 rounds it down
So our final answer will be 946
Hope this helped and have a good day
Let

where we assume |r| < 1. Multiplying on both sides by r gives

and subtracting this from
gives

As n → ∞, the exponential term will converge to 0, and the partial sums
will converge to

Now, we're given


We must have |r| < 1 since both sums converge, so


Solving for r by substitution, we have


Recalling the difference of squares identity, we have

We've already confirmed r ≠ 1, so we can simplify this to

It follows that

and so the sum we want is

which doesn't appear to be either of the given answer choices. Are you sure there isn't a typo somewhere?
Answer:
Area of a rectangle = 7/12 of an inch
Step-by-step explanation
Area of a rectangle = Length × width
In this case, the length is represented by height
Height = 2/3 of an inch
Width = 7/8 of an inch
Area of a rectangle = Length × width
= 2/3 × 7/8
= (2 * 7) / (3 * 8)
= 14 / 24
= 7 / 12
Area of a rectangle = 7/12 of an inch
I don't know the meaning of 'square' in your question.but i think you had better make it more clear .