1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reil [10]
3 years ago
5

Hakim needs to simplify the expression below (1.85

Engineering
2 answers:
Bogdan [553]3 years ago
7 0

Answer:

The first thing he would do is SUBTRACTION

Explanation:

Sloan [31]3 years ago
5 0

Answer:

The first thing he would do is SUBTRACTION

Explanation:

Reason: The subtraction part would be in parenthesis so that causes us to do subtraction first

Here is a little help

P- Parenthesis

E- Exponents

M- Multiplication

D- Division

A- Addition

S- Subtraction

Since the subtraction is in parenthesis you would subtract first

You might be interested in
Air enters a tank through an area of 0.2 ft2 with a velocity of 15 ft/s and a density of 0.03 slug/ft3. Air leaves with a veloci
Mademuasel [1]

Answer:

please find attached.

Explanation:

4 0
4 years ago
I need ideas of usernames for a 2021 Jeep Wrangler Rubicon!!
rjkz [21]

Answer:

2021 super star wagon master

6 0
3 years ago
Air at 400kPa, 970 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occu
Sonja [21]

Answer:

a

The rate of work developed is \frac{\r W}{\r m}= 300kJ/kg

b

The rate of entropy produced within the turbine is   \frac{\sigma}{\r m}=  0.0861kJ/kg \cdot K

Explanation:

     From  the question we are told

          The rate at which heat is transferred is \frac{\r Q}{\r m } = -  30KJ/kg

the negative sign because the heat is transferred from the turbine

          The specific heat capacity of air is c_p = 1.1KJ/kg \cdot K

          The inlet temperature is  T_1 = 970K

          The outlet temperature is T_2 = 670K

           The pressure at the inlet of the turbine is p_1 = 400 kPa

          The pressure at the exist of the turbine is p_2 = 100kPa

           The temperature at outer surface is T_s = 315K

         The individual gas constant of air  R with a constant value R = 0.287kJ/kg \cdot K

The general equation for the turbine operating at steady state is \

               \r Q - \r W + \r m (h_1 - h_2) = 0

h is the enthalpy of the turbine and it is mathematically represented as          

        h = c_p T

The above equation becomes

             \r Q - \r W + \r m c_p(T_1 - T_2) = 0

              \frac{\r W}{\r m}  = \frac{\r Q}{\r m} + c_p (T_1 -T_2)

Where \r Q is the heat transfer from the turbine

           \r W is the work output from the turbine

            \r m is the mass flow rate of air

             \frac{\r W}{\r m} is the rate of work developed

Substituting values

              \frac{\r W}{\r m} =  (-30)+1.1(970-670)

                   \frac{\r W}{\r m}= 300kJ/kg

The general balance  equation for an entropy rate is represented mathematically as

                       \frac{\r Q}{T_s} + \r m (s_1 -s_2) + \sigma  = 0

          =>          \frac{\sigma}{\r m} = - \frac{\r Q}{\r m T_s} + (s_1 -s_2)

    generally (s_1 -s_2) = \Delta s = c_p\ ln[\frac{T_2}{T_1} ] + R \ ln[\frac{v_2}{v_1} ]

substituting for (s_1 -s_2)

                      \frac{\sigma}{\r m} = \frac{-\r Q}{\r m} * \frac{1}{T_s} +  c_p\ ln[\frac{T_2}{T_1} ] - R \ ln[\frac{p_2}{p_1} ]

                      Where \frac{\sigma}{\r m} is the rate of entropy produced within the turbine

 substituting values

                \frac{\sigma}{\r m} = - (-30) * \frac{1}{315} + 1.1 * ln\frac{670}{970} - 0.287 * ln [\frac{100kPa}{400kPa} ]

                    \frac{\sigma}{\r m}=  0.0861kJ/kg \cdot K

           

 

                   

   

5 0
4 years ago
3. (a) (5 points) Suppose N packets arrive simultaneously to a link at which no packets are currently being transmitted or queue
Bezzdna [24]

Answer:

(N-1) × (L/2R) = (N-1)/2

Explanation:

let L is length of packet

R is rate

N is number of packets

then

first packet arrived with 0 delay

Second packet arrived at = L/R

Third packet arrived at = 2L/R

Nth packet arrived at = (n-1)L/R

Total queuing delay = L/R + 2L/R + ... + (n - 1)L/R = L(n - 1)/2R

Now

L / R = (1000) / (10^6 ) s = 1 ms

L/2R = 0.5 ms

average queuing delay for N packets = (N-1) * (L/2R) = (N-1)/2

the average queuing delay of a packet = 0 ( put N=1)

4 0
4 years ago
What is the tool used to take off a wheel nut
pishuonlain [190]

Answer:

A socket wrench

Explanation:

My dad is a mechanic

8 0
4 years ago
Read 2 more answers
Other questions:
  • A hollow aluminum sphere, with an electrical heater in the center, is used in tests to determine the thermal conductivity of ins
    14·2 answers
  • "A computer architect redesigns the pipeline above to enable branch prediction. When PCSrc is asserted (branch taken) IF/ID is f
    10·1 answer
  • You are using a Geiger counter to measure the activity of a radioactive substance over the course of several minutes. If the rea
    6·1 answer
  • Hi plz delete this question i had to edit it cuz it was wrong question
    5·1 answer
  • Sarah and Raj take/takes me to a baseball game every year.
    11·1 answer
  • O local utilizado pelos grandes avioes para descolar e aterrar
    14·1 answer
  • What are the success factors for mechanical engineering?
    8·2 answers
  • Limestone scrubbing is used to remove SO2 in a flue gas desulfurization (FGD) system. Relevant reactions are given below. A lime
    8·1 answer
  • Planetary gears require the armature to be offset via a gear housing that holds the starter drive.
    12·2 answers
  • If you deposit today 11,613 in an account earning 8% compound interest, for how long should you invest the money in order to ear
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!