Find full question attached
Answer:
(b) By including a statement that he or she is licensed by the Board for Professional Engineers and Land Surveyors immediately above the signature line in at least 12 point type on all contracts for services
Explanation:
A PE(professional engineer) licensee must show that he is licensed in order to show and ensure public safety as he is qualified for the job he is handling. The California regulations on professional engineers holds that all professional engineers must be licensed by the board of professional engineers and Land surveyors in order to operate legally as an engineer. The engineer may show licensure through the following options:
The engineer might provide statement to each client to show he is licensed which would then be signed by the client
The engineer may choose to post a wall certificate in his work premises to show he is licensed
The engineer may choose to include a statement of license in a letterhead or contract document which must be above the client's signature line and not less than 12 point type
Answer: The movement of tectonic plates
Explanation:
Tectonic plates are the part of the earth's crust that both the ocean and land rest on. These plates are constantly moving as a result of currents in the mantle.
These movements cause stress on the surface which has the effect of fracturing rocks and thereby creating/ forming faults in the earth's crust. Sometimes faults form when these plates move away from each other and sometimes they are formed when they push into each other.
Answer:
105 km
Explanation:
The motorist was going 30 km/hr, and it took 3 hours 30 minutes. That's 3.5 hours. 3.5×30=105
Answer:

Explanation:
Previous concepts
Angular momentum. If we consider a particle of mass m, with velocity v, moving under the influence of a force F. The angular momentum about point O is defined as the “moment” of the particle’s linear momentum, L, about O. And the correct formula is:

Applying Newton’s second law to the right hand side of the above equation, we have that r ×ma = r ×F =
MO, where MO is the moment of the force F about point O. The equation expressing the rate of change of angular momentum is this one:
MO = H˙ O
Principle of Angular Impulse and Momentum
The equation MO = H˙ O gives us the instantaneous relation between the moment and the time rate of change of angular momentum. Imagine now that the force considered acts on a particle between time t1 and time t2. The equation MO = H˙ O can then be integrated in time to obtain this:

Solution to the problem
For this case we can use the principle of angular impulse and momentum that states "The mass moment of inertia of a gear about its mass center is
".
If we analyze the staritning point we see that the initial velocity can be founded like this:

And if we look the figure attached we can use the point A as a reference to calculate the angular impulse and momentum equation, like this:

](https://tex.z-dn.net/?f=0%2B%5Csum%20%5Cint_%7B0%7D%5E%7B4%7D%2020t%20%280.15m%29%20dt%20%3D0.46875%20%5Comega%20%2B%2030kg%5B%5Comega%280.15m%29%5D%280.15m%29)
And if we integrate the left part and we simplify the right part we have

And if we solve for
we got:
