Answer:
The sample will be heated to 808.5 Kelvin
Explanation:
Step 1: Data given
Volume before heating = 2.00L
Temperature before heating = 35.0°C = 308 K
Volume after heating = 5.25 L
Pressure is constant
Step 2: Calculate temperature
V1 / T1 = V2 /T2
⇒ V1 = the initial volume = 2.00 L
⇒ T1 = the initial temperature = 308 K
⇒ V2 = the final volume = 5.25 L
⇒ T2 = The final temperature = TO BE DETERMINED
2.00L / 308.0 = 5.25L / T2
T2 = 5.25/(2.00/308.0)
T2 = 808.5 K
The sample will be heated to 808.5 Kelvin
Inherited it from his grandfather
Answer: The temperature of 0.6 moles of fluorine that occupy 15 L at 2,300 mmHg is 920 K
Explanation:
According to ideal gas equation:

P = pressure of gas = 2300 mm Hg = 3.02 atm (760mmHg=1atm)
V = Volume of gas = 15 L
n = number of moles = 0.6
R = gas constant =
T =temperature = ?


Thus the temperature of 0.6 moles of fluorine that occupy 15 L at 2,300 mmHg is 920 K
Some material from meteors lingers in the mesosphere, causing this layer to have a relatively high concentration of iron and other metal atoms. Very strange, high altitude clouds called "noctilucent clouds" or "polar mesospheric clouds" sometime form in the mesosphere near the poles.
I really hope this helps! I wish you the best of luck!
Solution :
Given :
Amount of anserine solution = 0.200 M
pH value is = 7.20
Preparation of 0.04 M solution of anserine from the 0.2 M solution.
0.2 M x
= 0.04 M x 1000 ml
= 200 ml
So the 200 ml of 0.2 M anserine solution is required to prepare0.04 M of anserine.
0.1 M x
= 0.04 x 1000 ml
= 400 ml
Therefore, 400 ml of HCl is needed.