A B C these are the answers hopes this help <3
Answer:
Q = 30355.2 J
Explanation:
Given data:
Mass of ice = 120 g
Initial temperature = -5°C
Final temperature = 115°C
Energy required = ?
Solution:
Specific heat capacity of ice is = 2.108 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Q = m.c. ΔT
ΔT = T2 -T1
ΔT = 115 - (-5°C)
ΔT = 120 °C
Q = 120 g × 2.108 j/g.°C × 120 °C
Q = 30355.2 J
Density<span> is </span>defined<span> as the ratio between mass and volume or mass per unit volume.
Source is google
</span>
Answer:
The activation energy for this reaction = 23 kJ/mol.
Explanation:
Using the expression,

Where,


is the activation energy
R is Gas constant having value = 8.314×10⁻³ kJ / K mol

The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (280 + 273.15) K = 553.15 K
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (376 + 273.15) K = 649.15 K
So,




<u>The activation energy for this reaction = 23 kJ/mol.</u>
Answer:
P2 = 19.2atm
Explanation:
Initial pressure (P1) = 16atm
Initial temperature (T1) = 340K
Final temperature (T2) = 408K
Final pressure (P2) = ?
This question involves the use of pressure law
Pressure law states that the pressure of a fixed mass of gas is directly proportional to it's temperature provided that volume is kept constant.
Mathematically,
P = kT, k = P / T
Therefore,
P1 / T1 = P2 / T2 = P3 / T3 = ......=Pn / Tn
P1 / T1 = P2 / T2
We need to solve for P2
P2 = (P1 × T2) / T1
Now we can plug in the values and solve for P2
P2 = (16 × 408) / 340
P2 = 6528 / 340
P2 = 19.2atm
The final pressure (P2) of the gas is 19.2atm