We know that the element Z = 119 would be placed right below the Fr, in the column of the alcaline metals.
We also know that the trend in the electronegativity is to decrease when you go up-down ia group.
The known electronegativities of the elements of this group are:
Li: 0.98
Na: 0.93
K: 0.82
Rb: 0.82
Cs: 0.79
Fr: 0.70
Then the hypotetical element Z = 119 would probably have an electronegativity slightly below 0.70, for sure in the range 0.60 - 0.70.
Answer: it would be cation, 2+
Explanation: electrons are negatively charged by 1. So if you get rid of 2 electrons it would be positive and cation is used to represent positive ions.
Frenkel defect is a defect in crystalline solids in which an atom is displaced from its lattice position to an interstitial space. This creates a vacant space at the original site and an interstitial defect at the new site within the same element. This defect does not affect the chemical properties of the compound. This defect usually occur in ionic solids with large size difference between the anion and cation.
LiCl does not exhibit Frenkel defect because the size difference between the anion and the cation of the compound is very small.
Answer: The Lattice energy is the energy required to separate an ionic solid into its component gaseous ions <em>or</em>
It is the energy released when gaseous ions combine to form an ionic solid.
Explanation:
The lattice energy depends on the ionization energies and electron affinities of atoms involved in the formation of the compound. The ionization energies and electron affinities also depends on the ionic radius and charges of the ions involved. As the ionic radius for cations <em>increases</em> down the groups, ionization energy <em>decreases</em>, whereas, as ionic radii <em>decreases</em> across the periods , ionization energy <em>increases</em>. The trend observed for anions is that as ionic radii <em>increase </em>down the groups, electron affinity <em>decreases. </em>Across the period, as ionic radii <em>increases</em> electron affinity <em>increases</em>. Also, as the charge on the ion <em>increases,</em> it leads to an <em>increase</em> in energy requirement/content.
Therefore, for compounds formed from cations and anions in the same period, the highest charged cation and anion will have the highest lattice energy. For example, among the following compounds: Al2O3 (aluminium oxide), AlCl3 (aluminium chloride), MgO, MgCl2 (magnesium chloride), NaCl, Na2O (sodium oxide); Al2O3(aluminium oxide) will have the highest lattice energy, thus will be hardest to break apart because its ions have the highest charge.