PV = nRT
P is pressure, V is volume in L, n is number of moles, R is the gas constant, and T is temperature in K
(1.23 atm)(10.3 L) = (n)(.08206)(29.8 + 273)
n = .5 moles x 38 grams per mol F2 = 19.4 grams F2
Explanation:
we know that 0.250 L = 0.250 dm3
molarity = concentration in dm3/ volume
molarity = 0.175/0.250 = 0.7 mol/dm3
It take 0.54 hours to deposit 6.36g of copper
<h3>Further explanation</h3>
Faraday's Law I
"The mass of the substance formed at each electrode is proportional to the electric current flowing in the electrolysis
W = e.i.t / 96500

e = equivalent = Ar / valence
i = current, A
t = time, s
W=6.36 g
e = 63.5 : 2 =31.75
i = 10 A

Complete Question
A student is extracting caffeine from water with dichloromethane. The K value is 4.6. If the student starts with a total of 40 mg of caffeine in 2 mL of water and extracts once with 6 mL of dichloromethane
The experiment above is repeated, but instead of extracting once with 6 mL the extraction is done three times with 2 mL of dichloromethane each time. How much caffeine will be in each dichloromethane extract?
Answer:
The mass of caffeine extracted is 
Explanation:
From the question above we are told that
The K value is 
The mass of the caffeine is 
The volume of water is 
The volume of caffeine is 
The number of times the extraction was done is n = 3
Generally the mass of caffeine that will be extracted is
![P = m * [\frac{V}{K * v_c + V} ]^3](https://tex.z-dn.net/?f=P%20%3D%20%20m%20%20%2A%20%20%5B%5Cfrac%7BV%7D%7BK%20%2A%20%20v_c%20%2B%20V%7D%20%5D%5E3)
substituting values
![P = 40 * [\frac{2}{4.6 * 2 + 2} ]^3](https://tex.z-dn.net/?f=P%20%3D%20%2040%20%20%20%2A%20%20%5B%5Cfrac%7B2%7D%7B4.6%20%2A%20%202%20%2B%202%7D%20%5D%5E3)
