The boiling point of HF is higher than the boiling point of
, and it is higher than the boiling point of
.
<h3>What is the boiling point?</h3>
The boiling point is the temperature at which the pressure exerted by the surroundings upon a liquid is equalled by the pressure exerted by the vapour of the liquid.
has weak dispersion force attractions between its molecules, whereas liquid HF has strong ionic interactions between
and
ions.
Only London Forces are formed - Therefore more energy is required to break the intermolecular forces in HF than in the other hydrogen halides and so HF has a higher boiling point.
and
will only have intra-molecular attractions and there will be no hydrogen bonds present in them. As a result, their boiling point will be lower.
Hence, the boiling point of HF is higher than the boiling point of
, and it is higher than the boiling point of
.
Learn more about the boiling point:
brainly.com/question/25777663
#SPJ1
<span>The sun and planets formed from a collapsing spinning cloud of gas and dust.</span>
The number of moles in 3.612 x 10²⁴ molecules of CaO is 6 moles.
<h3>
Number of moles in the molecules</h3>
The number of moles in 3.612 x 10²⁴ molecules of CaO is calculated as follows;
6.02 x 10²³ molecules = 1 mole
3.612 x 10²⁴ molecules = ?
= (3.612 x 10²⁴ ) / (6.02 x 10²³ )
= 6 moles
Thus, the number of moles in 3.612 x 10²⁴ molecules of CaO is 6 moles.
Learn more about number of moles here: brainly.com/question/15356425
Answer:
(a) boiling point
(d) density at a given temperature and pressure.
Explanation:
Isomers are compounds that have the same molecular formula but different structural formulas. They differ in chemical and physical properties depending on the type of isomerism displayed by the compounds.
The compounds stated here are structural or constitutional isomers hence they possess different boiling points and densities at a given temperature and pressure owing to structural differences in the molecules.
Since they have the same molecular formula, they must yield the same result during combustion analysis and they must have the same molecular weight.
Answer:
The laws are: (1) Every object moves in a straight line unless acted upon by a force.
(2) The acceleration of an object is directly proportional to the net force exerted and inversely proportional to the object's mass.
(3) For every action, there is an equal and opposite reaction.