First, we need the balanced equation: H₂ + Cl₂ ---> 2HCl
since not much information is given, I am assuming we are at STP and that 22.4 Liters= 1 mol
1) let's convert the volume to moles using the molar volume of a gas. also we need to convert the cm₃ to mL, then to Liters.
8 cm³ (1 ml/ 1 cm³)(1 L/ 1000 mL) (1 mol/ 22.4 Liters)= 3.6x10⁻⁴ moles of H₂
2) let's use the mole ratio of the balanced equation to convert moles of H₂ to moles of HCl
3.6x10⁻⁴ mol H₂ (2 mol HCl/ 1 mol H₂)= 7.1x10⁻⁴ mol HCl
3) lastly, we convert the moles of HCl to grams using the molar mass.
molar mass of HCl= 1.01 + 35.5= 36.51 g/mol
7.1x10⁻⁴ mol HCl (36.51 g/mol)=<span> 0.026 grams HCl</span>
Explanation:
The force of gravity acting on an object is given by :
W = F = mg
Where W is the weight of an object
The force of gravity on house is 300,000 N. The force of gravity pulling down on your house would be exactly twice as much if your house has twice as much as mass because force of gravity is directly depends on mass.
Producer. Hope this helps!
Answer:
The reaction is not spontaneous in the forward direction, but in the reverse direction.
Explanation:
<u>Step 1: </u>Data given
H2(g) + I2(g) ⇌ 2HI(g) ΔG° = 2.60 kJ/mol
Temperature = 25°C = 25+273 = 298 Kelvin
The initial pressures are:
pH2 = 3.10 atm
pI2 = 1.5 atm
pHI 1.75 atm
<u>Step 2</u>: Calculate ΔG
ΔG = ΔG° + RTln Q
with ΔG° = 2.60 kJ/mol
with R = 8.3145 J/K*mol
with T = 298 Kelvin
Q = the reaction quotient → has the same expression as equilibrium constant → in this case Kp = [p(HI)]²/ [p(H2)] [p(I2)]
with pH2 = 3.10 atm
pI2 = 1.5 atm
pHI 1.75 atm
Q = (3.10²)/(1.5*1.75)
Q = 3.661
ΔG = ΔG° + RTln Q
ΔG = 2600 J/mol + 8.3145 J/K*mol * 298 K * ln(3.661)
ΔG =5815.43 J/mol = 5.815 kJ/mol
To be spontaneous, ΔG should be <0.
ΔG >>0 so the reaction is not spontaneous in the forward direction, but in the reverse direction.
Since there is loss of kinetic energy