Standard temperature and pressure (STP) means a temperature of 0°c and a pressure of 1 atmosphere (atm). The molar gas volume is used to convert between the number of moles of a gas and the volume of the gas at STP. One mole of a gas occupies a volume of 22400 cm³ or 22.4 liters at STP according to the molar gas volume.
Answer:
ΔG° = -533.64 kJ
Explanation:
Let's consider the following reaction.
Hg₂Cl₂(s) ⇄ Hg₂²⁺(aq) + 2 Cl⁻(aq)
The standard Gibbs free energy (ΔG°) can be calculated using the following expression:
ΔG° = ∑np × ΔG°f(products) - ∑nr × ΔG°f(reactants)
where,
ni are the moles of reactants and products
ΔG°f(i) are the standard Gibbs free energies of formation of reactants and products
ΔG° = 1 mol × ΔG°f(Hg₂²⁺) + 2 mol × ΔG°f(Cl⁻) - 1 mol × ΔG°f(Hg₂Cl₂)
ΔG° = 1 mol × 148.85 kJ/mol + 2 mol × (-182.43 kJ/mol) - 1 mol × (-317.63 kJ/mol)
ΔG° = -533.64 kJ
Answer: Electronegativity increases as the size of an atom decrease.
Explanation: Electronegativity is the measure of the ability of an atom in a bond to attract electrons to itself.
Electronegativity increases across a period and decreases down a group.
Towards the left of the table, valence shells are less than half full, so these atoms (metals) tend
to lose electrons and have low electronegativity. Towards the right of the table, valence shells are more than half full, so these atoms (nonmetals) tend to gain electrons and have high electronegativity.
Down a group, the number of energy levels (n) increases, and so does the distance between the nucleus and the outermost orbital. The increased distance and the increased shielding weaken the nuclear attraction, and so an atom can’t attract electrons as strongly.