Answer is: <span>the molarity of HCl is </span>0.097 M.
Chemical reaction: LiOH + HCl → LiCl + H₂O.
V(HCl) = 13.60 mL - 1.25 mL = 12.35 mL.
V(LiOH) = 11.20 mL - 2.65 mL = 8.55 mL.
c(LiOH) = 0.140 M.
From chemical reaction: n(LiOH) : n(HCl) = 1 : 1.
c(HCl) · V(HCl) = c(LiOH) · V(LiOH).
c(HCl) = 8.55 mL · 0.140 M / 12.35 mL.
c(LiOH) = 0.097 M.
Answer:
1.18 moles of CS₂ are produced by the reaction.
Explanation:
We present the reaction:
5C + 2SO₂ → CS₂ + 4CO
5 moles of carbon react to 2 moles of sulfur dioxide in order to produce 1 mol of carbon disulfide and 4 moles of carbon monoxide.
As we do not have data from the SO₂, we assume this as the excess reagent. We convert the mass of carbon to moles:
70.8 g / 12 g/mol = 5.9 moles
Ratio is 5:1, so 5 moles of carbon react to produce 1 mol of CS₂
Then, 5.9 moles will produce (5.9 . 1) / 5 = 1.18 moles
Answer:
4.33 L
Explanation:
Assuming ideal behaviour and that all 0.300 moles of gas reacted, we can solve this problem using Avogadro's law, which states that at constant temperature and pressure:
Where in this case:
We <u>input the given data</u>:
- 2.16 L * 0.601 mol = V₂ * 0.300 mol
And <u>solve for V₂</u>:
Answer:
a. 1,2,and 3.
Explanation:
When something turns liquid, e.g. metal, you need to heat it. When something turns gas, e.g. water, you need to heat it. And when something goes directly from solid to gas, e.g. dry ice, carbon dioxide, you need to add heat to it. hope this helps! Please mark brainiest.
A scientist would most likely need to update her model when it no longer supports the latest results.