According to the law of conservation of mass, the amount of BARIUM present of the reactants is the same as the amount present in the products (the precipitate).
(11.21 g BaSO4) / (233.4 g/mol BaSO4) = 0.0480 mol BaSO4 and original barium salt
(10.0 g) / (0.0480 mol) = 208.3 g/mol
So it must have been BaCl2, because the molar mass of Barium is 137 which leave 71 grams left. Since Barium is a +2 charge, it means the atom next to it must be twice. Chlorine mass is 35, which twice is 71
Answer:
pH = 8.34
Explanation:
The equilbriums of the amphoteric HCO₃⁻ (Ion of NaHCO₃) are:
H₂CO₃ ⇄ <em>HCO₃⁻</em> + H⁺ Ka1 <em>-Here, HCO₃⁻ is acting as a base-</em>
<em>HCO₃⁻</em>⇄ CO₃²⁻ + H⁺ Ka2 <em>-Here, is acting as an acid-</em>
Where Ka1 = 4.3x10⁻⁷ and Ka2 = 4.8x10⁻¹¹. As pKa = -log Ka:
pKa1 = 6.37; pKa2 = 10.32
As the pH of amphoteric salts is:
pH = (pKa1 + pKa2) / 2
<h2>pH = 8.34</h2>
I couldn't really find anything about the growth time but it does say that it could remain viable in soil for up to 40 years
Answer:
Calculate the pH of 0.010 M HNO2 solution. The K, for HNO2 is 4.6 x 104
Answer: pH = 2.72