The balanced equation for the above reaction is as follows;
3NO₂ + H₂O --> 2HNO₃ + NO
stoichiometry of NO₂ to NO is 3:1
molar volume is where 1 mol of any gas occupies a volume of 22.4 L
volume of gas is directly proportional to number of moles of gas.
therefore stoichiometry can be applied for volume as well.
volume ratio of NO₂ to NO is 3:1
volume of NO₂ reacted - 854 L
therefore volume of NO formed - 854 L /3 = 285 L
volume of NO formed - 285 L
Answer: Photosynthesis
Explanation:
<em>The process of photosynthesis</em> is used to help make food for plants. The inputs are sunlight, water (H2O), and carbon dioxide (CO2). Then the outputs are glucose (C6H12O6) which is food, and oxygen (O2) is released.
I hope this helps :)
Answer:
The noble gases (Group 18) are located in the right of the periodic table and were previously referred to as the "inert gases" due to the fact that their filled valence shells (octets) make them extremely nonreactivE
Explanation:
Answer:
2Ba₃(PO₄)₂ +6SiO₂ ⇒ P₄O₁₀ +6BaSiO₃
Explanation:
Equating coefficients, you get ...
aBa₃(PO₄)₂ +bSiO₂ ⇒ cP₄O₁₀ +dBaSiO₃
For Ba: 3a = d
For P: 2a = 4c
For O: 8a +2b = 10c +3d
For Si: b = d
__
Expressing everything in terms of b and c, we get ...
d = b
a = b/3 = 2c
From the second, b = 6c, so we have ...
a = 2c
b = 6c
c = c
d = 6c
And we can write the equation with c=1 as ...
2Ba₃(PO₄)₂ +6SiO₂ ⇒ P₄O₁₀ +6BaSiO₃
Answer:
See Explanation
Explanation:
Mathematically, this means to combine like terms, such as terms with the same variable. In chemistry, this can refer to polar objects combining with polar objects while nonpolar objects combine with nonpolar objects.