Answer:
The induced emf 1.43 s after the circuit is closed is 4.19 V
Explanation:
The current equation in LR circuit is :
.....(1)
Here I is current, V is source voltage, R is resistance, L is inductance and t is time.
The induced emf is determine by the equation :

Differentiating equation (1) with respect to time and put in above equation.


Substitute 6.05 volts for V, 0.655 Ω for R, 2.55 H for L and 1.43 s for t in the above equation.


Answer:
v = 1.6 m/s
Explanation:
Given that,
Distance, d = 72 m
Time taken, t = 45 s
We need to find their average velocity. Average velocity of an object is given by total distance divided by total time taken.

So, their average velocity is 1.6 m/s.
Answer:

Explanation:
We have given that the battery has an internal emf of 9 volt
So E = 9 volt
Capacitance 
It is given that on the terminal voltage is only 80% of potential difference
So V = 0.8×9 = 7.2 volt
We know that energy stored in the capacitor is given by

Answer:
0.04865 m
Explanation:
k = Spring Constant
m = Mass
d = Distance
g = Acceleration due to gravity = 9.81 m/s²
Angular frequency is given by

At equilibrium we have

The distance by which the spring stretches from its unstrained length is 0.04865 m