Answer:
Explanation:
Since the block is at rest in an elevated position, we can assume that it only has potential energy.
U=mgh is the formula for potential energy where U=potential energy, m= mass, g=acceleration due to gravity, and h=height.
Plug in known variables....
U=4kg*9.8m/s^2*20m
U=784 joules of potential energy or letter A.
The energy of a wave is directly proportional to the square of the amplitude of the wave.
<h3>What is the relationship between energy and amplitude?</h3>
There is direct relationship between energy of the wave and the amplitude of the wave. The energy transported by a wave is directly proportional to the square of the amplitude of the wave. This means if energy is increase the amplitude of wave becomes double and vice versa.
Energy = (amplitude)2
So we can conclude that the energy of a wave is directly proportional to the square of the amplitude of the wave.
Learn more about energy here: brainly.com/question/13881533
#SPJ1
Answer:
276.135 J
Explanation:
Given that:
mass of Fe = 30.0 g
initial temperature = 24.5°C
final temperature = 45.0°C
specific heat of Fe = 0.449 J/g°C
We can determine the thermal energy added by using the formula;
Q = mcΔT
Q = 30.0g × 0.449 J/g°C × (45.0 - 24.5)°C
Q = 276.135 J
Answer: 16.22 m/s^2
Explanation: g= GM/r^2 G= (6.67x 10^-11) M= 1.66(6x 10^24) r=(6400x 10^3) so
((6.67x10^-11)(1.66x 6x 10^24))/ (6400x10^3)^2 = 16.22 m/s^2
Answer:
<h2>inertia of motion </h2>
Explanation:
.... ...