Answer:
1.1 m/s²
Explanation:
From the question,
F -mgμ = ma.................... Equation 1
Where F = applied force, m = mass of the apple cart, g = acceleration due to gravity, μ = coefficient of friction., a = acceleration of the apple cart.
Given: F = 115 N, m = 25 kg, μ = 0.35
Constant: g = 10 m/s²
Substitute these values into equation 2
115-(25×10×0.35) = 25×a
115-87.5 = 25a
25a = 27.5
a = 27.5/25
a = 1.1 m/s²
The question is incomplete but still I answer to assume your thinking.
The picture is attached below!.
Here,
F is the force with which you pull up the incline.
N is the normal force.
w is the weight acting downward.
Axis are mentioned in the attached picture.
Concept:You can see there is no movement of object in the y-direction that means acceleration is zero in y-direction, sum of all the forces in y-direction equal to zero.
According to newton second law,
<span>∑ F = ma
</span>As, acceleration is zero in y-direction, so right hand side is zero in the above equation.
<span>∑ F = 0</span>
N-wcosθ=0
N= m*g*cos25°
N= m*(9.8)*(0.9063)
N= 8.8817*mBy putting the value of mass(m)(not given in the question) you will get the answer.
Hopefully, this is the answer of your question.
First we have to find out the gravity on that planet. We use Newton second equation of motion. It is given as,
s = ut +(gt^2)/2
Distance s = 25m
Time t = 5 s
Velocity u = 0
By putting these values,
25 = 1/2.g.(5)²
g = 2
So the gravity on that planet is 2. Lets find out the weight of the astronaut.
Mass of the astronaut on earth m = 80 kg
Weight of astronaut on earth W = mg = (80)(9.8) = 784 N
Weight of astronaut on earth like planet = (80)(2) = 160 N
x = 160N
Answer:
The acceleration is 14.28 km/h^2
Explanation:
Step one:
Given data
initial speed u= 0 km/h
final speed v= 140km/h
time t= 9.8 seconds
Required
The acceleration of the car
Step two:
From a= v-u/t
substitute
a= 140-0/9.8
a=140/9.8
a=14.28 km/h^2
Answer:
15N
Explanation:
According to Newton's Second Law of Motion
F = m*a
mass = m = 5Kg
acceleration = a = 3m/s^2
=> F = 5kg * 3m/s^2
=> F = 15 N