Let us first know the given: Tennis ball has a mass of 0.003 kg, Soccer ball has a mass of 0.43 kg. Having the same velocity at 16 m/s. First the equation for momentum is P=MV P=Momentum M=Mass V=Velocity. Now let us have the solution for the momentum of tennis ball. Pt=0.003 x 16 m/s= ( kg-m/s ) I use the subscript "t" for tennis. Momentum of Soccer ball Ps= 0.43 x 13m/s = ( km-m/s). If we going to compare the momentum of both balls, the heavier object will surely have a greater momentum because it has a larger mass, unless otherwise the tennis ball with a lesser mass will have a greater velocity to be equal or greater than the momentum of a soccer ball.
Answer:
La aceleración necesaria para detener el avión es - 10.42 m/s².
Explanation:
Un movimiento uniformemente acelerado (M.U.A) es aquél cuya aceleración es constante y la velocidad de un objeto cambia a medida que el movimiento evoluciona.
Siendo la aceleración "a" el cambio de velocidad al tiempo transcurrido en un punto A a B, la velocidad inicial la velocidad que tiene un cuerpo al iniciar su movimiento en un período de tiempo y la velocidad final la velocidad que tiene un cuerpo al finalizar su movimiento en un período de tiempo, entonces en M.U.A se cumple:
Vf² - Vo² = 2*a*d
donde:
- Vf: Velocidad final
- Vo: Velocidad inicial
- a: Aceleración
- d: Distancia recorrida
En este caso:
- Vf: 0 m/s, porque el avión se detiene
- Vo: 50 m/s
- a: ?
- d: 120 m
Reemplazando:
(0 m/s)² - (50 m/s)² = 2*a*120 m
Resolviendo:

a= - 10.42 m/s²
<u><em>La aceleración necesaria para detener el avión es - 10.42 m/s².</em></u>
Answer:
The smallest part of a millimeter that can be read with a digital caliper with a four digit display is 0.02mm. Thus, it has to be converted to centimetre. So, divide by 10, we then have 0.02/10= *0.002cm* not mm.
Answer:
12.4 m/s²
Explanation:
L = length of the simple pendulum = 53 cm = 0.53 m
n = Number of full swing cycles = 99.0
t = Total time taken = 128 s
T = Time period of the pendulum
g = magnitude of gravitational acceleration on the planet
Time period of the pendulum is given as


T = 1.3 sec
Time period of the pendulum is also given as


g = 12.4 m/s²
Sorry!
This cannot be answered. We don't have weight, height, etc.