1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fed [463]
4 years ago
8

A train travels 94 kilometers in 3 hours, and then 65 kilometers in 3 hours. What is its average speed?

Physics
2 answers:
Norma-Jean [14]4 years ago
8 0
The average speed of the train is about 26.5 kilometers per hour
const2013 [10]4 years ago
6 0
Average speed  = 

             (total distance covered) / (total time to cover the distance) .

Total distance covered = (94km + 65 km)  =  159 km.

Total time = (3 hr + 3 hr) = 6 hours

Average speed  =  (159 km) / (6 hours) =  26.5 km/hr .
You might be interested in
A block with mass M = 3 kg is moving on a flat surface with constant speed v1 =
Alchen [17]

Answer:

this makes no since so i cant help you here sorry

5 0
2 years ago
Which statement is true about a planet’s orbital motion?
lana66690 [7]

Answer:

Orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.

Explanation:

The gravitational force is responsible for the orbital motion of the planet, satellite, artificial satellite, and other heavenly bodies in outer space.

When an object is applied with a velocity that is equal to the velocity of the orbit at that location, the body continues to move forward. And, this motion is balanced by the gravitational pull of the second object.

The orbiting body experience a centripetal force that is equal to the gravitational force of the second object towards the body.

The velocity of the orbit is given by the relation,

                                    V = \sqrt{\frac{GM}{R + h} }

Where

                   V - velocity of the orbit at a height h from the surface

                    R - Radius of the second object

                    G - Gravitational constant

                    h - height from the surface

The body will be in orbital motion when its kinetic motion is balanced by gravitational force.

                         1/2 mV^{2} = GMm/R

Hence, the orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.

3 0
3 years ago
One property that makes electromagnetic waves differ from other types of waves is that they can
IgorC [24]
Electromagnectic Waves Travel In A Vacuum
4 0
3 years ago
Read 2 more answers
The carbon isotope 14C is used for carbon dating of archeological artifacts. 14C(mass 2.34×10−26kg) decays by the process known
Nookie1986 [14]

Answer:

2240.92365 m/s

Explanation:

m_1 = Mass of electron = 9.11\times 10^{−31}\ kg

v_1 = Speed of electron = 5.7\times 10^7\ m/s

p_2 = Neutrino has a momentum = 7.3\times 10^{-24}\ kg m/s

M = total mass = 2.34\times 10^{-26}\ kg

In the x axis as the momentum is conserved

Mv_x=m_1v_1\\\Rightarrow v_x=\dfrac{m_1v_1}{M}\\\Rightarrow v_x=\dfrac{9.11\times 10^{−31}\times 5.7\times 10^7}{2.34\times 10^{-26}}\\\Rightarrow v_x=2219.10256\ m/s

In the y axis

Mv_y=p_2\\\Rightarrow v_y=\dfrac{p_2}{M}\\\Rightarrow v_y=\dfrac{7.3\times 10^{-24}}{2.34\times 10^{-26}}\\\Rightarrow v_y=311.96581\ m/s

The resultant velocity is

R=\sqrt{v_x^2+v_y^2}\\\Rightarrow R=\sqrt{2219.10256^2+311.96581^2}\\\Rightarrow R=2240.92365\ m/s

The recoil speed of the nucleus is 2240.92365 m/s

3 0
3 years ago
In a second order lever system the force ratio is 2.5, the load is at the distance of 0.5m from the fulcrum find distance of eff
Fynjy0 [20]

Answer:

1.25 m

Explanation:

From the question given above, the following data were obtained:

Force ratio = 2.5

Distance of load from the fulcrum = 0.5 m

Distance of effort =.?

The distance of the effort from the fulcrum can be obtained as illustrated below:

Force ratio = Distance of effort / Distance of load

2.5 = Distance of effort / 0.5

Cross multiply

Distance of effort = 2.5 × 0.5

Distance of effort = 1.25 m

Therefore, the distance of the effort from the fulcrum is 1.25 m

8 0
3 years ago
Other questions:
  • Which phrase most closely characterizes a person's sense of self?
    7·1 answer
  • Which of the following are properties of acids?
    9·2 answers
  • Can the validity of a model be limited, or must it be universally valid? How does this compare to the required validity of a the
    11·1 answer
  • A cat weighing 5kg is climbing at the top of a tree and has potential energy at 1176kg. Find the height of the tree
    14·1 answer
  • a pole vaulter at the top of his vault is 6.15 m in the air . if he has a gravitational potential energy of 4o42 j , what is his
    6·2 answers
  • Which best illustrates the gravitational force in action?
    12·1 answer
  • What is non uniform velocity​
    5·1 answer
  • Samples of different materials, A and B, have the same mass, but the sample
    10·2 answers
  • *Urgent* I WILL GIVE BRAINLIEST
    8·1 answer
  • A net force of 50 N causes a mass to accelerate at a rate of 6.8 m/s2. Determine the mass. ​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!