Answer:
Perpendicular to the surface
Explanation:
- Electric field lines represent the direction of the electric field. The electric field lines also correspond to the direction along which the gradient of the electric potential is maximum.
- Equipotentials are lines or surfaces along which the electric potential is constant: the electric potential does not change moving along an equipotential surface.
Given the two definitions, equipotential lines are always perpendicular to the electric field lines. Therefore, in this problem, the direction of the electric field is perpendicular to the spherical equipotential surface.
Think its Positive
hope this helpes
Answer is D. Neutral charge
I attached the missing picture.
The force of seat acting on the child is a reaction the force of child pressing down on the seat. This is the third Newton's law. The force of a child pressing down the seat and the force of the seat pushing up on the child are the same.
There two forces acting on the child. The first one is the gravitational force and the second one is centrifugal force. In this example, the force of gravity is always pulling down, but centrifugal force always acts away from the center of circular motion.
Part AFor point A we have:

In this case, the forces are aligned, centrifugal is pointing up and gravitational is pulling down.
Part BAt the point, B situation is a bit more complicated. In this case force of gravity and centrifugal force are not aligned. We have to look at y components of this forces, y-axis, in this case, is just pointing upward.
Part CThe child will stay in place at point A when centrifugal force and force of gravity are in balance:
Explanation:
003 (part 1 of 2)
Pressure is force divided by area.
P = F / A
P = (117 kg × 9.8 m/s²) / (2 × (0.05 m)²)
P = 229,320 Pa
003 (part 2 of 2)
There are approximately 6895 Pa in 1 psi.
P = 229,320 Pa × (1 psi / 6895 Pa)
P = 33.3 psi
004 (part 1 of 2)
Since the collisions are elastic, the angle of reflection is the same as the angle of incidence (it bounces off at the same angle).
Impulse = change in momentum
F Δt = m Δv
F (36 s) = (300 × 0.003 kg) (5.2 sin 57° m/s − (-5.2 sin 57° m/s))
F = 0.218 N
004 (part 2 of 2)
Pressure is force over area.
P = F / A
P = 0.218 N / 0.712 m²
P = 0.306 N/m²