Answer: it is called a open circuit
Explanation:
Answer:
the normal force that the wall exerts on the ball
Explanation:
As Newton's third law states:
"when an object A exerts a force on object B, then object B exerts an equal and opposite force on object A".
If we apply this law to this problem, we can identify the ball as object A, and the wall as object B. As the ball hits the wall, the ball exerts a force on the wall (toward the direction of motion of the ball), so the wall exerts an equal and opposite force on the ball (in the opposite direction). This force is the normal force of the wall, and it is responsible for pushing the ball back towards Erica.
The answer is Anguer...
<em>Hope </em><em>it </em><em>helps.</em><em>.</em><em>.</em><em> </em><em>pls </em><em>mark</em><em> brainliest</em>
Answer:
-4×-2y=14 (1)
-10×+7y=-25 (2)
multiplying eq 1 by 7 and eq 2 by 2 and add eq. 1 and 2
-28×-14y=98
-20×+14y=-50
___________
-28×=48
×=48/-28
×=-12/7
now
-4×-2y=14
-4*-12/7-2y=14
48/7-2y=14
-2y=14-48/7
-2y=(98-48)/7
-2y=50/7
y=-50/14
y=-25/7
When Emmett is lifting a box
vertically, the forces that must be added to calculate the total force are: the
gravitational force, tension force(the force exerted by Emmett to the box and
the force exerted by the box to Emmett), and air resistance force.