The maximum mass of B₄C that can be formed from 2.00 moles of boron (III) oxide is 55.25 grams.
<h3>What is the stoichiometry?</h3>
Stoichiometry of the reaction gives idea about the relative amount of moles of reactants and products present in the given chemical reaction.
Given chemical reaction is:
2B₂O₃ + 7C → B₄C + 6CO
From the stoichiometry of the reaction, it is clear that:
2 moles of B₂O₃ = produces 1 mole of B₄C
Now mass of B₄C will be calculated by using the below equation:
W = (n)(M), where
- n = moles = 1 mole
- M = molar mass = 55.25 g/mole
W = (1)(55.25) = 55.25 g
Hence required mass of B₄C is 55.25 grams.
To know more about stoichiometry, visit the below link:
brainly.com/question/25829169
#SPJ1
Answer:
CO2 (g)
Explanation:
In solids the interatomic or intermolecular space is least . It is most pronounced in gases . That is why inter molecular or interatomic attraction is least in gases . That is why gas flows .
Hence , when we try to compress a gas , due to inter molecular space , it is most likely to get compressed . It will be least compressed when we try to compress a solid because of lack of intermolecular space .
The DNA is found in the golgi
Answer:
Polymeric MDI is a mixture of. monomeric MDI as well as larger molecular weight oligomers of MDI, and is a brownish. liquid at room temperature and may have a slight odor. Commercial MDI products are. often mixtures of monomeric and polymeric MDI and can contain other additives as well.
Explanation:
Although 1013.25 mb (760 mm Hg) is considered to be the standard atmospheric pressure at sea level, it does not mean that the pressure at this level has this value, actually this being 1011 mb.