<h2>
After 26.28 seconds projectile returns 26.28 seconds.</h2>
Explanation:
Initial velocity = 450 ft/s = 137.16 m/s
Angle, θ = 70°
Consider the vertical motion of projectile,
When the projectile return to the ground we have
Displacement, s = 0 m
Acceleration, a = -9.81 m/s²
Initial velocity, u = 137.16 x sin70 = 128.89 m/s
Substituting in s = ut + 0.5 at²
s = ut + 0.5 at²
0 = 128.89 x t + 0.5 x (-9.81) x t²
t² - 26.28 t = 0
t ( t- 26.28) = 0
t = 0 s or t = 26.28 s
After 26.28 seconds projectile returns 26.28 seconds.
To solve the problem it is necessary to apply the concepts related to the conservation of energy through the heat transferred and the work done, as well as through the calculation of entropy due to heat and temperatra.
By definition we know that the change in entropy is given by

Where,
Q = Heat transfer
T = Temperature
On the other hand we know that by conserving energy the work done in a system is equal to the change in heat transferred, that is

According to the data given we have to,




PART A) The total change in entropy, would be given by the changes that exist in the source and sink, that is



On the other hand,



The total change of entropy would be,



Since
the heat engine is not reversible.
PART B)
Work done by heat engine is given by



Therefore the work in the system is 100000Btu
Answer: NNOOOOOOOOOOOOOOOOOOONONONO
Explanation: simple harmonic motion, in physics, repetitive movement back and forth through an equilibrium, or central, position, so that the maximum displacement on one side of this position is equal to the maximum displacement on the other side. The time interval of each complete vibration is the same. The force responsible for the motion is always directed toward the equilibrium position and is directly proportional to the distance from it. That is, F = −kx, where F is the force, x is the displacement, and k is a constant. This relation is called Hooke’s law.
A specific example of a simple harmonic oscillator is the vibration of a mass attached to a vertical spring, the other end of which is fixed in a ceiling. At the maximum displacement −x, the spring is under its greatest tension, which forces the mass upward. At the maximum displacement +x, the spring reaches its greatest compression, which forces the mass back downward again. At either position of maximum displacement, the force is greatest and is directed toward the equilibrium position, the velocity (v) of the mass is zero, its acceleration is at a maximum, and the mass changes direction. At the equilibrium position, the velocity is at its maximum and the acceleration (a) has fallen to zero. Simple harmonic motion is characterized by this changing acceleration that always is directed toward the equilibrium position and is proportional to the displacement from the equilibrium position. Furthermore, the interval of time for each complete vibration is constant and does not depend on the size of the maximum displacement. In some form, therefore, simple harmonic motion is at the heart of timekeeping.
Hello!
The Correct Answer would 100% be:
Option "C".
"People in location C would complain about foul taste in water".
I Hope my answer has come to your Help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead! :)
(Mark As Brainliest IF Helped!)
-TheOneAboveAll :D
Answer:
they're more inclined to be violent so A