Answer:
N = 3032 turns
Explanation:
The magnetic field produced by a solenoid is described by
B = μ₀ n I
Where is the permittivity in a vacuum with a value of 4π 10⁻⁷ N /A², n is the turn density and I the current
Let's apply this equation to the problem, the turn density is the number of turns per unit length, in this case it is the same magnet length
L = 8 cm = 0.08 m
Let's calculate
B = μ₀ N/L I
N = B L / μ₀ I
N = 0.10 0.08 / (4π 10⁻⁷ 2.1)
N = 3,032 103 turns
Answer:
(1) The maximum air temperature is 1383.002 K
(2) The rate of heat addition is 215.5 kW
Explanation:
T₁ = 17 + 273.15 = 290.15

T₂ = 290.15 × 3.17767 = 922.00139

Therefore,
T₃ = T₂×1.5 = 922.00139 × 1.5 = 1383.002 K
The maximum air temperature = T₃ = 1383.002 K
(2)


Therefore;


Q₁ = 1.005(1383.002 - 922.00139) = 463.306 kJ/jg
Heat rejected per kilogram is given by the following relation;
= 0.718×(511.859 - 290.15) = 159.187 kJ/kg
The efficiency is given by the following relation;

Where:
β = Cut off ratio
Plugging in the values, we get;

Therefore;


Heat supplied = 
Therefore, heat supplied = 215491.064 W
Heat supplied ≈ 215.5 kW
The rate of heat addition = 215.5 kW.
It’s measured in a reference frame that is usually the earth’s surface
Answer:
D
Explanation:
Scientists use significant figures to avoid claiming more accuracy in a calculation than they actually know.
The answer is D have a nice day!