Answer:
1.08
Explanation:
This is the case of interference in thin films in which interference bands are formed due to constructive interference of two reflected light waves , one from upper layer and the other from lower layer . If t be the thickness and μ be the refractive index then
path difference created will be 2μ t.
For light coming from rarer to denser medium , a phase change of π occurs additionally after reflection from denser medium, here, two times, once from upper layer and then from the lower layer , so for constructive interference
path diff = nλ , for minimum t , n =1
path diff = λ
2μ t. = λ
μ = λ / 2t
= 626 / 2 x 290
= 1.08
Answer:
n=6.56×10¹⁵Hz
Explanation:
Given Data
Mass=9.1×10⁻³¹ kg
Radius distance=5.3×10⁻¹¹m
Electric Force=8.2×10⁻⁸N
To find
Revolutions per second
Solution
Let F be the force of attraction
let n be the number of revolutions per sec made by the electron around the nucleus then the centripetal force is given by
F=mω²r......................where ω=2π n
F=m4π²n²r...............eq(i)
as the values given where
Mass=9.1×10⁻³¹ kg
Radius distance=5.3×10⁻¹¹m
Electric Force=8.2×10⁻⁸N
we have to find n from eq(i)
n²=F/(m4π²r)

All of the above, work is a measurement of energy transfer, in Joules.
Potential energy = Joules
Kinetic energy = Joules
The key thing here is that anything having to do with just energy or energy transfer is measured in joules.
The formula we can use in this case is:
d = v0t + 0.5 at^2
v = at + v0
where,
d = distance travelled
v0 = initial velocity = 0 since at rest
t = time travelled
a = acceleration
v = final velocity when it took off
a. d = 0 + 0.5 * 3 * 30^2
d = 1350 m
b. v = 3 * 30 + 0
<span>v = 90 m/s</span>
Answer:
T =176 N
Explanation:
from diagram
F -(m_1+m_2_g) = (m_1+m_2_g)a
440 - (6+4)g = (6+4)a
a =\frac{440-10*9.8}{10}
a =34.2 m/s^2
frrom free body diagram of mass m2 = 4kg
T -m_2g =m_2a
T = m_2(g +a)
T = 4(9.81+34.2)
T =176 N