Answer:
Step-by-step explanation:
you have to multiply
Answer:
1 is 9 sq units
2 is 12
3 is 24cm^2
Step-by-step explanation:
First you would need to find out how many 9 payments of 58$ would be and that is 522. Then you would need to subtract the 522 and the 480 and your answer would be 42$ so the interest would be 42$
The value of f[ -4 ] and g°f[-2] are
and 13 respectively.
<h3>What is the value of f[-4] and g°f[-2]?</h3>
Given the function;


- f[ -4 ] = ?
- g°f[ -2 ] = ?
For f[ -4 ], we substitute -4 for every variable x in the function.

For g°f[-2]
g°f[-2] is expressed as g(f(-2))
![g(\frac{3x-2}{x+1}) = (\frac{3x-2}{x+1}) + 5\\\\g(\frac{3x-2}{x+1}) = \frac{3x-2}{x+1} + \frac{5(x+1)}{x+1}\\\\g(\frac{3x-2}{x+1}) = \frac{3x-2+5(x+1)}{x+1}\\\\g(\frac{3x-2}{x+1}) = \frac{8x+3}{x+1}\\\\We\ substitute \ in \ [-2] \\\\g(\frac{3x-2}{x+1}) = \frac{8(-2)+3}{(-2)+1}\\\\g(\frac{3x-2}{x+1}) = \frac{-16+3}{-2+1}\\\\g(\frac{3x-2}{x+1}) = \frac{-13}{-1}\\\\g(\frac{3x-2}{x+1}) = 13](https://tex.z-dn.net/?f=g%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%2B%205%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%20%2B%20%5Cfrac%7B5%28x%2B1%29%7D%7Bx%2B1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B3x-2%2B5%28x%2B1%29%7D%7Bx%2B1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B8x%2B3%7D%7Bx%2B1%7D%5C%5C%5C%5CWe%5C%20substitute%20%5C%20in%20%5C%20%5B-2%5D%20%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B8%28-2%29%2B3%7D%7B%28-2%29%2B1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B-16%2B3%7D%7B-2%2B1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B-13%7D%7B-1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%2013)
Therefore, the value of f[ -4 ] and g°f[-2] are
and 13 respectively.
Learn more about composite functions here: brainly.com/question/20379727
#SPJ1
The given expression is:
(x^3 * y^4) / (3y^4)
We can notice that the term y^4 is a common term found in both the numerator and the denominator of the given expression, therefore, we can cancel this term from the both numerator and denominator (as if you divided both numerator and denominator by y^4).
Doing this, we will have the simplified form of the expression as follows:
(x^3) / (3)