Explanation:
The internal heat sources for Jupiter and Saturn derive from primordial heat resulting from the initial gravitational contraction of each planet. Jupiter also generates heat by slow contraction, which liberates substantial gravitational energy. A significant part of Saturn’s heat comes from the release of gravitational energy from helium separating from the lighter hydrogen and sinking to its core. What one considers to be a star is a matter of definition, as we discuss in more detail in the chapter on The Birth of Stars and the Discovery of Planets outside the Solar System. While both Jupiter and Saturn generate much of their energy internally, they are not large enough (by a significant factor) to support nuclear reactions in their interiors, and so are not considered to be stars.
All of them will have the same density
<h2>
Answer:</h2>
Dark matter is a type of matter, whose composition is unknown and which corresponds to 80% of the matter in the universe. Its name refers to the fact it does not emit or interact with any type of electromagnetic radiation, being completely transparent throughout the electromagnetic spectrum.
However, it interacts with the known matter through <u>gravity</u>.
In this sense, it is believed that the Milky Way has 90% dark matter and only 10% ordinary matter (known matter). Because, like gravity, dark matter can not be observed directly, however its existence is inferred through the movement of the stars and the cosmic dust within the galaxy.
Answer:
Your answer is in the pic
Answer: D
Explanation:
Kinetic energy = 1/2mV^2
From the formula above, we can deduce that kinetic energy is proportional to the square of speed. That is,
K.E = V^2
Graphically, the relationship isn't linear but a positive exponential. Therefore, option D is the correct answer.