Answer:
188 A
Explanation:
Parameters given:
Length of cable, L = 0.78 m
Angle, θ = 60º
Magnetic field, B = 5.5 * 10^(-5) T
Force experienced by wire, F = 7 * 10^(-3) N
The force experienced by a current carrying wire of length L, due to a magnetic field B is given as:
F = I * L * B * sinθ
=> I = F/(L * B * sinθ)
I = (7 * 10^(-3)) / (0.78 * 5.5 * 10^(-5) * sin60)
I = 188 A
Yes, the volume of the cylinder will remain constant. As the radius decreases, the height will increase to make sure that the volume is kept the same.
We have been given a value of dr/dt and are required to find dh/dt
Because the volume is constant, we can plug it into the formula for the volume of the cylinder and rearrange it to make h the subject:
128 = πr²h
h = 128/πr²
Now we differentiate both sides:
dh/dr = -256/πr³
Applying the chain rule:
dh/dt = dh/dr x dr/dt
dh/dt = (-256/πr³) x -0.05
dh/dt = 64/5πr³; substituting the value of r
dh/dt = 64/5π(1.5)³
dh/dt = 1.21 in/sec
The vertical velocity of the projectile upon returning to its original is 17. 74 m/s
<h3>
How to determine the vertical velocity</h3>
Using the formula:
Vertical velocity component , Vy = V * sin(α)
Where
V = initial velocity = 36. 6 m/s
α = angle of projectile = 29°
Substitute into the formula
Vy = 36. 6 * sin ( 29°)
Vy = 36. 6 * 0. 4848
Vy = 17. 74 m/s
Thus, the vertical velocity of the projectile upon returning to its original is 17. 74 m/s
Learn more about vertical velocity here:
brainly.com/question/24949996
#SPJ1
no because nuclear energy come from kinetic not potential energy. burning a wax candle is an example of heat/thermal energy .
Answer:
light waves can be converted to electricity through <em>a solar cell</em>
Explanation: