Becomes a +1 ion for this
Answer:
v = 0.41 m/s
Explanation:
- In this case, the change in the mechanical energy, is equal to the work done by the fricition force on the block.
- At any point, the total mechanical energy is the sum of the kinetic energy plus the elastic potential energy.
- So, we can write the following general equation, taking the initial and final values of the energies:

- Since the block and spring start at rest, the change in the kinetic energy is just the final kinetic energy value, Kf.
- ⇒ Kf = 1/2*m*vf² (2)
- The change in the potential energy, can be written as follows:

where k = force constant = 815 N/m
xf = final displacement of the block = 0.01 m (taking as x=0 the position
for the spring at equilibrium)
x₀ = initial displacement of the block = 0.03 m
- Regarding the work done by the force of friction, it can be written as follows:

where μk = coefficient of kinettic friction, Fn = normal force, and Δx =
horizontal displacement.
- Since the surface is horizontal, and no acceleration is present in the vertical direction, the normal force must be equal and opposite to the force due to gravity, Fg:
- Fn = Fg= m*g (5)
- Replacing (5) in (4), and (3) and (4) in (1), and rearranging, we get:


- Replacing by the values of m, k, g, xf and x₀, in (7) and solving for v, we finally get:

Let's use Newton's 2nd law of motion:
Force = (mass) x (acceleration)
Force = (68 kg) x (1.2 m/s²) = 81.6 newtons .
Answer:
velocity = 1527.52 ft/s
Acceleration = 80.13 ft/s²
Explanation:
We are given;
Radius of rotation; r = 32,700 ft
Radial acceleration; a_r = r¨ = 85 ft/s²
Angular velocity; ω = θ˙˙ = 0.019 rad/s
Also, angle θ reaches 66°
So, velocity of the rocket for the given position will be;
v = rθ˙˙/cos θ
so, v = 32700 × 0.019/ cos 66
v = 1527.52 ft/s
Acceleration is given by the formula ;
a = a_r/sinθ
For the given position,
a_r = r¨ - r(θ˙˙)²
Thus,
a = (r¨ - r(θ˙˙)²)/sinθ
Plugging in the relevant values, we obtain;
a = (85 - 32700(0.019)²)/sin66
a = (85 - 11.8047)/0.9135
a = 80.13 ft/s²
Significa que en su investigación, debe proporcionar suficiente información para que otras personas que lean su investigación puedan hacer la investigación nuevamente.