Answer:
k = 9.6 x 10^5 N/m or 9.6 kN/m
Explanation:
First, we need to use the expression to calculate the spring constant which is:
w² = k/m
Solving for k:
k = w²*m
To get the angular velocity:
w = 2πf
The problem is giving the linear velocity of the car which is 5.7 m/s. With this we can calculate the frequency of the car:
f = V/x
f = 5.7 / 4.9 = 1.16 Hz
Now the angular velocity:
w = 2π*1.16
w = 7.29 rad/s
Finally, solving for k:
k = (7.29)² * 1800
k = 95,659.38 N/m
In two significant figures it'll ve 9.6 kN/m
Answer:
c
Explanation:
it's the only one that makes sense
Kinetic, potential because, at the top of the ramp it’s going faster. Potential at the bottom of the ramp is potential because, it’s not doing any motion.
Answer:
In my opinion I think the answer is C you don't have to choose C
Answer:
The jet will fly 2400 km.
Explanation:
Given the velocity of the jet flying toward the east is 1,500 kmph toward the east.
We need to find the distance covered in 1.6 hours.
In our problem we are given speed and time, we can easily determine the distance using the following formula.


So, the supersonic jet will travel 2400 km in 1.6 hours toward the east from its starting point.