<h2>
Answer:</h2>
D. (1m, 0.5m)
<h2>
Explanation:</h2>
The center of mass (or center of gravity) of a system of particles is the point where the weight acts when the individual particles are replaced by a single particle of equivalent mass. For the three masses, the coordinates of the center of mass C(x, y) is given by;
x = (m₁x₁ + m₂x₂ + m₃x₃) / M ----------------(i)
y = (m₁y₁ + m₂y₂ + m₃y₃) / M ----------------(ii)
Where;
M = sum of the masses
m₁ and x₁ = mass and position of first mass in the x direction.
m₂ and x₂ = mass and position of second mass in the x direction.
m₃ and x₃ = mass and position of third mass in the x direction.
y₁ , y₂ and y₃ = positions of the first, second and third masses respectively in the y direction.
From the question;
m₁ = 6kg
m₂ = 4kg
m₃ = 2kg
x₁ = 0m
x₂ = 3m
x₃ = 0m
y₁ = 0m
y₂ = 0m
y₃ = 3m
M = m₁ + m₂ + m₃ = 6 + 4 + 2 = 12kg
Substitute these values into equations (i) and (ii) as follows;
x = ((6x0) + (4x3) + (2x0)) / 12
x = 12 / 12
x = 1 m
y = (6x0) + (4x0) + (2x3)) / 12
y = 6 / 12
y = 0.5m
Therefore, the center of mass of the system is at (1m, 0.5m)
I can not solve the problem if I do not have the mass.
The best and most correct answer among the choices provided by your question is the second choice or letter B.
<span>A satellite (s) is moving in an elliptical orbit around the earth has its angular momentum towards the earth changing in direction, but not in magnitude.</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
A) a mouse, to an order of magnitude = 0.1 m ( a tenth of a meter ) That would be a big mouse but the alternatives are 1 meter or one hundredth of a meter... so go with 1/10th
<span>b) Easy = 1 meter </span>
<span>c) two choices 10m or 100 m . Go with 100 m </span>
<span>d) Stretch it out , trunk tip to tail tip - call it 10 m </span>
<span>e) Your choice 100 m or 1000 m..... These are estimates. So long as you are within one order of magnitude you can't really be given wrong. So I'd say 100m</span>