<u>Given:</u>
Moles of He = 15
Moles of N2 = 5
Pressure (P) = 1.01 atm
Temperature (T) = 300 K
<u>To determine:</u>
The volume (V) of the balloon
<u>Explanation:</u>
From the ideal gas law:
PV = nRT
where P = pressure of the gas
V = volume
n = number of moles of the gas
T = temperature
R = gas constant = 0.0821 L-atm/mol-K
In this case we have:-
n(total) = 15 + 5 = 20 moles
P = 1.01 atm and T = 300K
V = nRT/P = 20 moles * 0.0821 L-atm/mol-K * 300 K/1.01 atm = 487.7 L
Ans: Volume of the balloon is around 488 L
Answer and Explanation:
For the following balanced reaction:
PCl₅(g) ↔ PCl₃(g) + Cl₂(g)
We can see that all reactants and products are gases, so it is an homogeneous equilibrium. The expression for the equilibrium constant Kp can be written from the partial pressures (P) of reactants and products as follows:

Where PPCl₃ is the partial pressure of PCl₃ (reactant), PCl₂ is the partial pressure of Cl₂ (reactant) and PPCl₅ is the partial pressure of PCl₅ (product).
Answer:
I think that middle school teachers are interested in teaching middle schoolers.
Effects of changes in volume in a reversible reaction in a chemical equilibrium can be predicted using Le Chatelier's Principle. I think this might be the answer, I hope it helps.