The amount of W(OH)2 needed would be 448.126 g
<h3>Stoichiometric calculation</h3>
From the equation of the reaction:
W(OH)2 + 2 HCl → WCl2 + 2 H2O
The mole ratio of W(OH)2 to HCl is 1:2
Mole of 150g HCl = 150/36.461
= 4.11 moles
Equivalent mole of W(OH)2 = 4.11/2
= 2.06 moles
Mass of 2.06 moles W(OH)2 = 2.06 x 217.855
= 448.188g
More on stoichiometric calculations can be found here: brainly.com/question/8062886
Explanation:
a positively charged nucleus is surrounded by mostly empty space.
Answer:
0.229 cm³.
Explanation:
The following data were obtained from the question:
Volume (in in³) = 0.014 in³
Volume (in cm³) =?
1 in = 2.54 cm
Next, we shall determine a conversion scale to convert from in³ to cm³. This can be obtained as follow:
1 in = 2.54 cm
Therefore,
1 in³ = 2.54³ cm³
1 in³ = 16.387 cm³
Finally, we shall convert 0.014 in³ to cm³. This can be obtained as follow:
1 in³ = 16.387 cm³
Therefore,
0.014 in³ = 0.014 in³ × 16.387 cm³ / 1 in³
0.014 in³ = 0.229 cm³
Thus, 0.014 in³ is equivalent to 0.229 cm³.
Answer:
In oxidation reduction reactions, one species gets reduced by taking on electron(s) and another species gets oxidized by losing electrons. The movement of electrons can be used to do work. ... The electron flow can be run through a wire and these electrons can be used to do work (like run a battery). Hope this helps.