Answer: vl = 2.75 m/s vt = 1.5 m/s
Explanation:
If we assume that no external forces act during the collision, total momentum must be conserved.
If both cars are identical and also the drivers have the same mass, we can write the following:
m (vi1 + vi2) = m (vf1 + vf2) (1)
The sum of the initial speeds must be equal to the sum of the final ones.
If we are told that kinetic energy must be conserved also, simplifying, we can write:
vi1² + vi2² = vf1² + vf2² (2)
The only condition that satisfies (1) and (2) simultaneously is the one in which both masses exchange speeds, so we can write:
vf1 = vi2 and vf2 = vi1
If we call v1 to the speed of the leading car, and v2 to the trailing one, we can finally put the following:
vf1 = 2.75 m/s vf2 = 1.5 m/s
Previous rocks melt and collide and to form igneous rocks.
Igneous rocks disintegrate due to weather disruptions and get carried away by water, where they form sedimentary rock strata by lithification.
Igneous and sedimentary change by heat and pressure to form metamorphic rocks.
Metamorphic rocks melt and become igneous rocks.
67.8 turns needed by the secondary coil to run the bulb.
<u>Explanation</u>:
We know that,



For calculating number of turns

Given that,



We need to find the number of turns in the secondary winding
to run the bulb at 120W 
Firstly find the secondary voltage in the transformer use, 






Now, finding the number of turns in secondary coil. Use, 




The number of turns in the secondary winding are 67.8 turns.
Answer:
80m<em>/</em><em>s</em>
Explanation:
Final velocity is given by
v=u+at
when a motorcyclist starts from rest, initial velocity (u) =0
therefore
v=0+4*20
v=80m/s
that's the answer