Answer:
a)6.7m/S
b)6.8m/s
Explanation:
Hello ! To solve the point b you must follow the steps below
1.Draw the slide taking into account its length and height and find the angle from which the swimmer is launched (see attached image)
2. Find the horizontal velocity (X) and vertical (Y) components (see attached image)
3) for the third step we must remember that as in the slide there is no horizontal acceleration the speed in X will remain constant at the end of the swimmer's path (Vx = 0.59m / s)
4)
the fourth step is to remember that vertically there is constant acceleration called gravity (g = 9.81m / s ^ 2), so to find the speed at the end of the route we use the following equation

where
Vfy= final verticaly speed
Vy=initial verticaly speed=0.59m/S
g=gravity=9.81m/S^2
y=height of slide=2.31m
solving

The last step is to add the velocity components vectorally at the end of the route with the following equation

point A
taking into account the previous steps we can infer that as the swimmer starts from rest, the velocity (Vx=Vy=O) is zero, so we should only use the formula for constant acceleration movement.

vy=0

Vfy=
=6.7m/s
<span>The </span>pineal gland<span> produces melatonin, a serotonin derived hormone which modulates sleep patterns in both circadian and seasonal cycles.</span>
Is there supposed to be a picture? Next time try putting a picture
Answer:
The radius is 
Explanation:
From the question we are told that
The distance beneath the liquid is 
The refractive index of the liquid is 
Now the critical value is mathematically represented as
![\theta = sin ^{-1} [\frac{1}{n_i} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%20sin%20%5E%7B-1%7D%20%5B%5Cfrac%7B1%7D%7Bn_i%7D%20%5D)
substituting values
![\theta = sin ^{-1} [\frac{1}{131} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%20sin%20%5E%7B-1%7D%20%5B%5Cfrac%7B1%7D%7B131%7D%20%5D)

Using SOHCAHTOA rule we have that

=> 
substituting values

