Answer:
<h2>13.82 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>13.82 moles</h3>
Hope this helps you
The incoming and outgoing energy at the Earth’s surface must balance. Or in other words, the flow of energy into the atmosphere must be balanced by an equal flow of energy out of the atmosphere and back to space.<span>
Earth's Energy balance describes how the incoming energy from the sun is used and returned to space. All </span>of the energy entering earth’s atmosphere comes from the sun. Half of it is absorbed by the earth’s surface i.e. the land and oceans, 30% is directly reflected back to space by clouds and 20% is absorbed by the atmosphere and clouds.<span>Earth's </span>actual<span> average global temperature is around 14° C (57 F).</span>
Answer:
![5.31*10^{-10} = \frac{[]H_{2}]^{2}[O_{2}]}{[H_{2}O]^{2}}](https://tex.z-dn.net/?f=5.31%2A10%5E%7B-10%7D%20%3D%20%5Cfrac%7B%5B%5DH_%7B2%7D%5D%5E%7B2%7D%5BO_%7B2%7D%5D%7D%7B%5BH_%7B2%7DO%5D%5E%7B2%7D%7D)
Explanation:
For a chemical reaction, equilibrium is a state at which the rate of the forward reaction equals that of the reverse reaction. The equilibrium constant Keq is a parameter characteristic of this state which is expressed as a ratio of the concentration of the products to that of the reactants.
For a hypothetical reaction:
xA + yB ⇄ zC
The equilibrium constant is :
![Keq = \frac{[A]^{x}[B]^{y}}{[C]^{z} }](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BA%5D%5E%7Bx%7D%5BB%5D%5E%7By%7D%7D%7B%5BC%5D%5E%7Bz%7D%20%7D)
The given reaction involves the decomposition of H2O into H2 and O2

The equilibrium constant is expressed as :
![Keq = \frac{[]H_{2}]^{2}[O_{2}]}{[H_{2}O]^{2}}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5B%5DH_%7B2%7D%5D%5E%7B2%7D%5BO_%7B2%7D%5D%7D%7B%5BH_%7B2%7DO%5D%5E%7B2%7D%7D)
Since Keq = 5.31*10^-10
![5.31*10^{-10} = \frac{[]H_{2}]^{2}[O_{2}]}{[H_{2}O]^{2}}](https://tex.z-dn.net/?f=5.31%2A10%5E%7B-10%7D%20%3D%20%5Cfrac%7B%5B%5DH_%7B2%7D%5D%5E%7B2%7D%5BO_%7B2%7D%5D%7D%7B%5BH_%7B2%7DO%5D%5E%7B2%7D%7D)
Answer:
7. 3–ethyl–6 –methyldecane
8. 5–ethyl–2,2–dimethyl–4–propyl–4 –heptene
Explanation:
It is important to note that when naming organic compounds having two or more different substituent groups, we simply name them alphabetically.
The name of the compound given in the question above can be written as follow:
7. Obtaining the name of the compound.
Compound contains:
I. Decane.
II. 3–ethyl.
III. 6 –methyl.
Naming alphabetically, we have
3–ethyl–6 –methyldecane
8. Obtaining the name of the compound.
Compound contains:
I. 2,2–dimethyl.
II. 4–propyl.
III. 4 –heptene.
IV. 5–ethyl.
Naming alphabetically, we have
5–ethyl–2,2–dimethyl–4–propyl–4 –heptene