Given that the vertex is at (50, 1000), the max profit is $1000 when 50 items are produced
Answer:
.70833
Step-by-step explanation:
Divide 8.5 by 12 since there are 12 inches in 1 foot
Answer:
Step-by-step explanation:
Hello!
Given the variables
X₁: Weight of a safety helmet for racers
X₂: Price of a safety helmet for racers
Note, there is n= 17 observed values for each variable so for all calculations I'll use this number and disregard the 18 mentioned in the text.
a) Scatterplot in attachment.
b) If you look at the diagram it seems that there is a negative linear regression between the price and the weight of the helmets, meaning, the higher the helmet weights, the less it costs.
c) The estimated regression equation is ^Yi= a + bXi
n= 17; ∑Y= 6466; ∑Y²= 3063392; ∑X= 1008; ∑X²= 60294; ∑XY= 367536
Y[bar]= 380.35; X[bar]= 59.29
The estimated regression equation for the price of the helmets as a function of their weight is:
^Yi= 2169.77 -30.18Xi
I hope it helps!
If <em>x</em> + 1 is a factor of <em>p(x)</em> = <em>x</em>³ + <em>k</em> <em>x</em>² + <em>x</em> + 6, then by the remainder theorem, we have
<em>p</em> (-1) = (-1)³ + <em>k</em> (-1)² + (-1) + 6 = 0 → <em>k</em> = -4
So we have
<em>p(x)</em> = <em>x</em>³ - 4<em>x</em>² + <em>x</em> + 6
Dividing <em>p(x)</em> by <em>x</em> + 1 (using whatever method you prefer) gives
<em>p(x)</em> / (<em>x</em> + 1) = <em>x</em>² - 5<em>x</em> + 6
Synthetic division, for instance, might go like this:
-1 | 1 -4 1 6
... | -1 5 -6
----------------------------
... | 1 -5 6 0
Next, we have
<em>x</em>² - 5<em>x</em> + 6 = (<em>x</em> - 3) (<em>x</em> - 2)
so that, in addition to <em>x</em> = -1, the other two zeros of <em>p(x)</em> are <em>x</em> = 3 and <em>x</em> = 2
Answer:
B
Step-by-step explanation: