The state of energy that is forbidden is 2p orbital. The correct option is b).
<h3>
What is the energy state of electrons?</h3>
The energy state of an electron depends upon the presence of the electron on the orbitals. Lower the energy they will be in the lower orbital. When they get higher energy they move to the higher orbital.
By using the Selection Rules for Electron Transitions
1.) ?l = +/- 1 and
2.) ?m = 0, +/- 1
The conservation of angular momentum is required by these laws. A photon's inherent angular momentum is 1. As 4p is higher than 2p and the electron is lowering its energy. So, it will go down to 2p orbital.
Thus, the correct option is b). 2p orbital.
The question is incomplete. Your full question is given below:
a) 3d
b) 2p
c) 1s
d) 2s
To learn more about the energy state of electrons, refer to the link:
brainly.com/question/4138621
#SPJ4
Ni(OH)₂ ⇄ Ni⁺² + 2 OH⁻
Ksp = [Ni⁺²][OH⁻]² = S (2S)² = 4S³
where S is molar solubility.
at pH = 10
[H⁺] = 10⁻¹⁰
[H⁺][OH⁻] = 10⁻¹⁴
so [OH⁻] = 10⁻⁴ M
Ksp = S [10⁻⁴ + 2S]²
Ksp is very small so the molar solubility of OH⁻ will be very small
so (10⁻⁴ + 2S) is about 10⁻⁴
so Ksp = S x 10⁻⁸
S =

= 6 x 10⁻⁸ M
Answer:
In the 1970s, Epel and other researchers showed that calcium is the essential factor that sparks development in eggs. As calcium levels rise, metabolic changes occur that cause the egg to divide and form into an embryo.
Explanation:
<span>The equation that describes the problem is Fe(NO3)3(aq) + 3NaOH(aq) ---> Fe(OH)3(s) + 3 NaNO3(aq)
The Net ionic equation is written as follows:
Fe^3(aq) + 3NO3-(aq) + 3Na+(aq) + 3OH-(aq) ---> Fe(OH)3(s) + 3Na+(aq) + 3NO^3-(aq)</span>