The wave speed to this question is 400 meters
<em><u>One</u></em><em><u> </u></em><em><u>newton</u></em><em><u> </u></em><em><u>force</u></em><em> </em><em>is</em><em> </em><em>defined as t</em><em>h</em><em>e</em><em> </em><em>force</em><em> </em><em>that</em><em> </em><em>is</em><em> necessary to provide a mass of one kilogram with an acceleration of one metre per second per second. One newton is equal to a force of 100,000 dynes in the centimetre-gram-second (CGS) system, or a force of about 0.2248 pound </em><em>i</em><em>n</em><em> </em><em>the</em><em> </em><em>f</em><em>o</em><em>o</em><em>t</em><em>-</em><em>p</em><em>o</em><em>u</em><em>n</em><em>d</em><em>-</em><em> </em><em>s</em><em>e</em><em>c</em><em>o</em><em>n</em><em>d</em><em> </em><em>system</em><em>.</em>
Both the object and earth pulls each other towards itself but since the mass and pulling force of objects are very small the pulling force of objects are negligible.
The solution would be like
this for this specific problem:
V^2 = 2AS = 2FS/M
V = sqrt(2FS/M) =
sqrt(2*105*.75/.087) = 44.52817783 = 42.5 mps
So the speed of the arrow as it leaves the bow
is 42.5 mps.
I am hoping that this answer has
satisfied your query and it will be able to help you in your endeavor, and if
you would like, feel free to ask another question.