I don’t know the answer but try khan academy it’s very helpful with all subjects and is free
To determine the height of the object given the time, we simply use the given relation between height and time in the problem statement. It is given as:
h = -16t^2 + 127t
We substitute 55 seconds to t and obtain,
h = -16(55)^2 + 127(55)
h = - 41415
Answer:
D. the wind picking up dust and carrying it
Explanation:
Erosion is a process in which an agent transfer the top soil to another region, thereby exposing the lower soil. These agents have the ability to move the top layer of soil and deposit it at another place. The major agents in this case are; a running or flowing body of water and wind.
Therefore, the change to the Earth's surface that is an example of erosion is the wind picking up dust and carrying it. Thereby exposing the lower layers.
Answer:
Motion with constant velocity of magnitude 1 m/s (uniform motion) for 4 seconds in a positive direction and then for 2 seconds uniform motion with constant velocity of magnitude 3 m/s in reverse direction .
Explanation:
The graph shows a constant velocity of 1 m/s for 4 seconds in the positive direction. After that, between 4 seconds and 6 seconds, the object reverses its motion with constant velocity of magnitude 3m/s.
The free-body diagram of the forces acting on the flag is in the picture in attachment.
We have: the weight, downward, with magnitude

the force of the wind F, acting horizontally, with intensity

and the tension T of the rope. To write the conditions of equilibrium, we must decompose T on both x- and y-axis (x-axis is taken horizontally whil y-axis is taken vertically):


By dividing the second equation by the first one, we get

From which we find

which is the angle of the rope with respect to the horizontal.
By replacing this value into the first equation, we can also find the tension of the rope: