¿Es esta una pregunta verdadera o falsa? Por cierto, no hay mucha gente que hable español en esta aplicación, así que buena suerte.
Answer:
Option A is the correct answer.
Explanation:
The instantaneous acceleration = Change in velocity in velocity/Time taken
The slope of the graph should give instantaneous acceleration.
Slope of a graph = Change in value of Y -axis / Change in values of X -axis
Comparing both the equations
Change in value of Y -axis = Change in velocity in velocity
Change in values of X -axis = Time taken
So velocity values should be on the Y axis and Time values should be on the X axis.
Option A is the correct answer.
<h2>
Answer: Prism</h2>
In the eighteenth century Isaac Newton found out that <u>when a beam of light from the Sun, passes trhough a prism is decomposed in many different colors</u>. He named this phenomenom as dispersion of light.
This phenomenom occurs when a beam of white light (which is compound of many wavelengths or "colors") is refracted (the different rays of light are diverted depending on their wavelengths) in some medium, leaving their constituent colors separated.
Therefore:
<h2>Isaac Newton used a <u>prism</u> to break white light into its component colors.</h2>
Answer with Explanation:
We are given that
Resistance of solenoid,R=4.3 ohm
Magnetic field,B=
Current,I=4.6 A
Diameter of wire,d=0.5 mm=
Radius of wire,r=

Radius of solenoid,r'=1 cm=

Resistivity of copper,
We know that

Where 
Using the formula


Number of turns of wire=
Number of turns of wire=
Hence, the number of turns of the solenoid,N=799
Magnetic field in solenoid,B=






Length of solenoid=12.5 cm
1m=100 cm
Wow ! This is not simple. At first, it looks like there's not enough information, because we don't know the mass of the cars. But I"m pretty sure it turns out that we don't need to know it.
At the top of the first hill, the car's potential energy is
PE = (mass) x (gravity) x (height) .
At the bottom, the car's kinetic energy is
KE = (1/2) (mass) (speed²) .
You said that the car's speed is 70 m/s at the bottom of the hill,
and you also said that 10% of the energy will be lost on the way
down. So now, here comes the big jump. Put a comment under
my answer if you don't see where I got this equation:
KE = 0.9 PE
(1/2) (mass) (70 m/s)² = (0.9) (mass) (gravity) (height)
Divide each side by (mass):
(0.5) (4900 m²/s²) = (0.9) (9.8 m/s²) (height)
(There goes the mass. As long as the whole thing is 90% efficient,
the solution will be the same for any number of cars, loaded with
any number of passengers.)
Divide each side by (0.9):
(0.5/0.9) (4900 m²/s²) = (9.8 m/s²) (height)
Divide each side by (9.8 m/s²):
Height = (5/9)(4900 m²/s²) / (9.8 m/s²)
= (5 x 4900 m²/s²) / (9 x 9.8 m/s²)
= (24,500 / 88.2) (m²/s²) / (m/s²)
= 277-7/9 meters
(about 911 feet)