Answer:
rectangle: 30 in^2
triangle: 12 in^2
composite: 42 in^2
Step-by-step explanation:
area of a rectangle: length times width
area of a triangle: 
composite area: break the area up by shapes you can find the area of, then add it back together
The answers are 5 x (80 x 7) and 80 fives plus 7 fives
<h3>
Answer:</h3>
- B. f(x) = 3,000(0.85)^x
- $1566.02
<h3>
Step-by-step explanation:</h3>
Part A
At the end of the year, the value of the computer system is ...
... (beginning value) - 15% · (beginning value) = (beginning value) · (1 - 0.15)
... = 0.85 · (beginning value)
Since the same is true for the next year and the next, the multiplier after x years will be 0.85^x. Then the value after x years is ...
... f(x) = (beginning value) · 0.85^x
The beginning value is given as $3000, so this is ...
... f(x) = 3000·0.85^x
____
Part B
For x=4, this is ...
... f(4) = 3000·0.85^4 = 3000·0.52200625 ≈ 1566.02
The value after 4 years is $1566.02.
The distance from the sun is option 2 5.59 astronomical units.
Step-by-step explanation:
Step 1; To solve the question we need two variables. P which represents the number of years a planet takes to complete a revolution around the Sun. This is given as 13.2 years in the question so P = 13.2 years. The other variable is the distance between the planet and the sun in astronomical units. We need to determine the value of this using the given equation.
Step 2; So we have to calculate the value of 'a' in Kepler's equation. But the exponential power
is on the variable we need to find so we multiply both the sides by an exponential power of
to be able to calculate 'a'.
P =
,
=
,
= a,
= a = 5.58533 astronomical units.
Rounding it over to nearest hundredth we get 5.59 astronomical units.
The best answer is A. The possible roots of this polynomial function 9i and -9i. It is possible that this polynomial function is a quadratic equation. It has a degree of two which means there are two roots and it is possible that the positive and negative value of 9i are its roots.