1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
chubhunter [2.5K]
4 years ago
13

a ball is thrown straight up into the air with a speed of 13 m/s. if the ball has a mass of 0.25 kg, how high does the ball go?

acceleration due to gravity is g=9.8m/s^2
Physics
1 answer:
evablogger [386]4 years ago
5 0
<h2>Hello!</h2>

The answer is: 8.62m

<h2>Why?</h2>

There are involved two types of mechanical energy: kinetic energy and potential energy, in two different moments.

<h2>First moment:</h2>

Before the ball is thrown, where the potential energy is 0.

<h2>Second moment: </h2>

After the ball is thrown, at its maximum height, the Kinetic Energy turns to 0 (since at maximum height,the speed is equal to 0) and the PE turns to its max value.

Therefore,

E=PE+KE

Where:

PE=m.g.h

KE=\frac{1*m*v^{2}}{2}

<em>E</em> is the total energy

<em>PE</em> is the potential energy

<em>KE</em> is the kinetic energy

<em>m</em> is the mass of the object

<em>g</em> is the gravitational acceleration

<em>h </em>is the reached height of the object

<em>v</em> is the velocity of the object

Since the total energy is always constant, according to the Law of Conservation of Energy, we can write the following equation:

KE_{1}+PE_{1}=KE_{2}+PE_{2}

Remember, at the first moment the PE is equal to 0 since there is not height, and at the second moment, the KE is equal to 0 since the velocity at maximum height is 0.

\frac{1*m*v^{2}}{2}+m.g.(0)=\frac{1*m*0^{2}}{2}+m.g.h\\\frac{1*m*v_{1} ^{2}}{2}=m*g*h_{2}

So,

h_{2}=\frac{1*m*v_{1} ^{2}}{2*m*g}\\h_{2}=\frac{1*v_{1} ^{2}}{2g}=\frac{(\frac{13m}{s})^{2} }{2*\frac{9.8m}{s^{2}}}\\h_{2}=8.62m}

Hence,

The height at the second moment (maximum height) is 8.62m

Have a nice day!

You might be interested in
Consider the force field and circle defined below. F(x, y) = x2 i + xy j x2 + y2 = 121 (a) Find the work done by the force field
kirza4 [7]

Answer: the work done by the force is 0

Explanation:

F (x², xy)

121 = 11²

so R = x² + y² = 11²

p = x². Q = xy

Δp/Δy = 0, ΔQ/Δx

using Green's theorem

woek = c_∫F.Δr = R_∫∫ ΔQ/Δx - Δp/Δy) ΔA

=  (x² + y² = 121)_∫∫ yΔA

now let x = rcosФ, y = rsinФ

ΔA = rΔrΔФ

so r from 0 to 11

and Ф from 0 to 2π

= 0_∫^2π   0_∫^11  rsinФ × rΔrΔФ

= 0_∫^2π SinФΔФ   0_∫^11  r²Δr

= [ -cosФ]^2π_0 [r³/3]₀¹¹ = ( -cos2π + cos0) (11³/3) = 0

therefore the work done by the force is 0

3 0
4 years ago
A point on a wheel of radius 40 cm that is rotating at a constant 5.0 revolutions per second is located 0.20 m from the axis of
Margarita [4]

Answer:

197.2 m/s^2

Explanation:

The centripetal acceleration of a point moving by circular motion is given by:

a=\omega^2 r

where

\omega is the angular velocity

r is the distance from the axis of rotation

The point on the wheel makes 5.0 revolutions per second, so the frequency is

f=\frac{5}{1}=5 Hz

and the angular velocity is

\omega=2\pi f = 2\pi (5)=31.4 rad/s

While the distance of the point from the axis of rotation is

r=0.20 m

Substituting, we find the acceleration:

a=(31.4)^2(0.20)=197.2 m/s^2

5 0
3 years ago
Read 2 more answers
A car travels 70 miles in 80 minutes. Which is its average speed per minute
Alexxx [7]
Average speed=total distance travelled/time
3 0
3 years ago
Read 2 more answers
In 2-4 sentences, summarize what you know about EM waves.
MaRussiya [10]

Answer:

In physics, electromagnetic radiation refers to the waves of the electromagnetic field, propagating through space, carrying electromagnetic radiant energy. It includes radio waves, microwaves, infrared, light, ultraviolet, X-rays, and gamma rays.

8 0
3 years ago
Read 2 more answers
A proton and a deuteron are moving with equal velocities perpendicular to a uniform magnetic field. A deuteron has the same char
Leokris [45]

Answer:

option (b)

Explanation:

mass of proton, mp = m

mass of deuteron, md = 2m

charge on proton, qp = q

charge on deuteron, qd = q

The magnetic force on the charged particle when it is moving is given by

F = q v B Sinθ

where, θ is the angle between the velocity and magnetic field.

Here, θ = 90°

Let v is the velocity of both the particle when they enters in the magnetic field.

The force on proton is given by

Fp = q x v x B ...... (1)

The force on deuteron is

Fd = q x v x B .... (2)

Divide equation (1) by equation (2)

Fp / Fd = 1

Thus, the ratio of force on proton to the force on deuteron is 1 : 1.

Thus, option (b) is correct.

7 0
3 years ago
Other questions:
  • A 150 n sled is being pulled up a 28 ° rough ramp at constant speed by a force of 100 n parallel to the ramp. with what accelera
    11·2 answers
  • How does the brightness of a bulb tell you about the energy of electrons passing through it?
    15·1 answer
  • What does the column that an element is in tell you?​
    15·1 answer
  • My sis needs help with this and I don't wanna help her!!! Can you guys help her????
    14·2 answers
  • A bowling ball and a baseball both roll across your foot at the same speed. The bowling ball hurts much more.
    12·2 answers
  • A car is traveling in a race.The car went from the initial velocity of 35 to the final velocity of 65 in 5 seconds what is the a
    11·1 answer
  • A 72-kg man stands on a spring scale in an elevator. Starting from rest, the elevator ascends, attaining its maximum speed of 1.
    12·1 answer
  • If a person displaces a mass of<br>60kg through 300 metres in 1<br>Minute, what is the power?<br>?​
    11·1 answer
  • Describe the movements that occur along each of the three types of faults. Describe the movements that occur along each of the t
    6·1 answer
  • In the context of variables and measurement scales, the magnitude of the differences between the numbers on the scale is meaning
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!