Answer:

Explanation:
Given:
- mass of solid disk,

- radius of disk,

- force of push applied to disk,

- distance of application of force from the center,

<em>For the condition of no slip the force of static friction must be greater than the applied force so that there is no skidding between the contact surfaces at the contact point.</em>

where:
= static frictional force




I believe that this question has the following choices to
choose from:
placer deposits
fossil compaction
hydrothermal solutions
igneous processes
Actually among all, I have never encountered an ore that
formed due to fossil compaction. I suppose we can get minerals such as marble
or lime but not ores. So the answer is:
<span>fossil compaction (answer)</span>
The answer is D. I know because I already answered the question.
B. Location#2 with an altitude of 200 feet
<span>(6.0x10^-22, -1.40x10^-21, 0) kg*m/s
Momentum is a conserved quantity. The total momentum of the system before and after the interactions will not change. So, let's look at the momentum before the interaction.
(3.2x10^-21, 0, 0) kg*m/s and (0,0,0) kg*m/s
After the interaction
(2.6x10^-21, 1.40x10^-21, 0) kg*m/s
and the other proton has to have a momentum that when added to this momentum equal the original value. Since the y and z vectors were initially 0, all we need for the y and x vector values of the result is to negate them. The x vector value will be
3.2x10^-21 - 2.6x10^-21 = 0.6x10^21 = 6.0x10^-22. So the other proton will have a momentum of
(6.0x10^-22, -1.40x10^-21, 0) kg*m/s</span>