The magnetic field direction and direction of induced current in a wire are related by the right hand grip rule. Since the magnetic field was upwards, the thumb points upwards and the fingers curl around it. When viewed from above, it is seen as a current flowing in the counter clockwise direction.
Answer:
-11.11 degree Celsius
Explanation:
The change was 44 degree fanhereit
To 56 degree fanhereit
Therefore the temperature range can be calculated as follows
56-44
= 12 degree fanhereit to Celsius
= 12-32×5/9
= -20×5/9
= 100/9
= -11.11 degree Celsius
Answer:

Explanation:
The attached figure shows the whole description. Considering the applied force is 100 N.
The acceleration of both blocks A and B, 
Firstly calculating the mass m using the second law of motion as :
F = ma
m is the mass


m = 125 kg
It suddenly encounters a surface that supplies 25.0 N a friction, F' = 25 N



So, the new acceleration of the block is
. Hence, this is the required solution.
Variables:
Source charge, Q = 3 micro C = 3 * 10^ - 6 C
E = electric field = 2.86 * 10 ^5 N/C
K = 8.99 * 10^9 N * m^2 / C
d = distance = ?
Formula:
E = K * Q / (d^2) => d^2 = K * Q / E
=> d^2 = 8.99 * 10^9 N * m^2 / C * 3 * 10^ -6 C / (2.86 * 10^ 5 N/C)
d^2 = 9.43 * 10 ^ -2 m^2
=> d = 3.07 * 10^-1 m
Answer: 0.307 m
Note: it is a long distance due to the Electric field is very low
cation
anion is negatively charged, so more electrons then protons,
cation is positively charged, so more protons thatn electrons