Answer: This is called the Doppler effect, where waves shift frequency and wavelength as the source travels towards you (higher frequency, shorter wavelength) or away from you (lower frequency, longer wavelength)
Explanation:
hoped this helped have a good day :)
Answer: 
Explanation:
We can solve this with the Law of Universal Gravitation and knowing the acceleration due gravity
of an object above the surface of the planet decreases with the distance (height) of this object from the center of the planet.
Well, according to the law of universal gravitation:
(1)
Where:
is the module of the force exerted between both bodies
is the gravitational constant
is the mass of the Earth
are the mass of each communications satellite
is the distance between the center of the Earth and the satellite
is the radius of the Earth
is the height of the satellite, measured from the Earth's surface
On the other hand, we know according to <u>Newton's 2nd law of motion:</u>
(2)
Combining (1) and (2):
(3)
Isolating
:
(4)
Remembering
:
(5)
Finally:
<span>The de-acceleration or negative acceleration of stopping is what damages bones. The ground is rigid and therefore the change in momentum when striking the ground will be large. On the trampoline, the elasticity of the material means that the momentum changes more slowly, resulting in smaller accelerations.</span>
Answer:
210
Explanation:
A ball rolls horizontally off the cliff at a speed of 30 m/s. It takes 7 seconds for the ball to hit the ground. What is the height of the cliff and the horizontal distance traveled by the ball?
S = (1/2)*9.8 m/s^2 * 7^2 = 240.1 m if the ball is very dense so air resistance, and therefore terminal velocity, can be ignored.
S = v * t = 30 m/s * 7 s = 210 m for the horizontal distance, again assuming negligible air resistance.
The ball only accelerates during the brief time that the club is in contact
with it. After it leaves the club face, it takes off at a constant speed.
If it accelerates at 20 m/s² during the hit, then
Force = (mass) x (acceleration) = (0.2kg) x (20 m/s²) = <em>4 newtons</em> .